首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Fluid–structure interactions are modelled by coupling the finite element fluid/ocean model ‘Fluidity-ICOM’ with a combined finite–discrete element solid model ‘Y3D’. Because separate meshes are used for the fluids and solids, the present method is flexible in terms of discretisation schemes used for each material. Also, it can tackle multiple solids impacting on one another, without having ill-posed problems in the resolution of the fluid’s equations. Importantly, the proposed approach ensures that Newton’s third law is satisfied at the discrete level. This is done by first computing the action–reaction force on a supermesh, i.e. a function superspace of the fluid and solid meshes, and then projecting it to both meshes to use it as a source term in the fluid and solid equations. This paper demonstrates the properties of spatial conservation and accuracy of the method for a sphere immersed in a fluid, with prescribed fluid and solid velocities. While spatial conservation is shown to be independent of the mesh resolutions, accuracy requires fine resolutions in both fluid and solid meshes. It is further highlighted that unstructured meshes adapted to the solid concentration field reduce the numerical errors, in comparison with uniformly structured meshes with the same number of elements. The method is verified on flow past a falling sphere. Its potential for ocean applications is further shown through the simulation of vortex-induced vibrations of two cylinders and the flow past two flexible fibres.

  相似文献   

2.
The measured geophysical response of sand – shale sequences is an average over multiple layers when the tool resolution (seismic or well log) is coarser than the scale of sand – shale mixing. Shale can be found within sand – shale sequences as laminations, dispersed in sand pores, as well as load bearing clasts. We present a rock physics framework to model seismic/sonic properties of sub-resolution interbedded shaly sands using the so-called solid and mineral substitution models. This modelling approach stays consistent with the conceptual model of the Thomas–Stieber approach for estimating volumetric properties of shaly sands; thus, this work connects established well log data-based petrophysical workflows with quantitative interpretation of seismic data for modelling hydrocarbon signature in sand – shale sequences. We present applications of the new model to infer thickness of sand – shale lamination (i.e., net to gross) and other volumetric properties using seismic data. Another application of the new approach is fluid substitution in sub-resolution interbedded sand–shale sequences that operate directly at the measurement scale without the need to downscale; such a procedure has many practical advantages over the approach of “first-downscale-and-then-upscale” as it is not very sensitive to errors in estimated sand fraction and end member sand/shale properties and remains stable at small sand/shale fractions.  相似文献   

3.
Abstract

The superconducting-gravimeter data of Melchior and Ducarme (1986) has been interpreted as internal motion in the Earth's core by Aldridge and Lumb (1987) using a Poincaré model. Several low-order modes with periods of 13–16 hours have been tentatively identified in the core which is taken to be an incompressible, homogeneous fluid within a rigid, rotating container. The identification is based on asymptotic values of the frequencies which change slowly with time while the modes decay with an e-folding time of about 280 days. The slow change in frequency with time implies a small temporal variation in the rotation rate of the core. This mean flow is a nonlinear effect often observed in laboratory experiments designed to excite Poincaré modes. Interaction among modes during free ringdown is also observed in those experiments and apparently in the data of Melchior et al. (1988) as well. Laboratory work thus provides the link to extend the Poincaré model to include viscous and nonlinear effects in order to interpret the gravimetric observations as core modes.  相似文献   

4.
This paper proposes a coupled fluid layer–foundation–poroelastic half-space vibration model to study how still water affects foundations operating underwater. As an example, we consider the problem of the vertical vibration of a rigid disk on a poroelastic half-space covered by a fluid layer having a finite depth. The solution of the disk vibration problem is obtained using the boundary conditions at the free surface of the fluid layer and the boundary conditions at the fluid layer–poroelastic medium interface. The solution is expressed in terms of dual integral equations that are converted into Fredholm integral equations of the second kind and solved numerically. Selected numerical results for the vertical dynamic impedance coefficient are examined based on different water depths, poroelastic materials, disk permeabilities and frequencies of excitation. Based on the numerical results, it is proposed that the hydrodynamic pressure caused by the foundation vibration is the intrinsic reason that the existence of a fluid layer has such a great effect on the dynamic characteristics of the foundation. In many cases, the hydrodynamic pressure caused by the foundation vibration cannot be ignored when designing dynamic underwater foundations. These results are helpful in understanding the dynamic response of foundations under still water without water waves, such as foundations in pools, lakes and reservoirs.  相似文献   

5.
In this paper scattering of elastic waves in fluid–solid interfaces is investigated. We use the Indirect Boundary Element Method to study this wave propagation phenomenon in 2D models. Three models are analyzed: a first one with an interface between two half-spaces, one fluid on the top part and the other solid in the bottom; a second model including a fluid half-space above a layered solid; and finally, a third model with a fluid layer bounded by two solid half-spaces. The source, represented by Hankel's function of the second kind, is always applied in the fluid. This indirect formulation can give to the analyst a deep physical insight on the generated diffracted waves because it is closer to the physical reality and can be regarded as a realization of Huygens' principle. In any event, mathematically it is fully equivalent to the classical Somigliana's representation theorem. In order to gauge accuracy we test our method by comparing with an analytical solution known as Discrete Wave Number. A near interface pulse generates scattered waves that can be registered by receivers located in the fluid and it is possible to infer wave velocities of solids. Results are presented in both time and frequency domain, where several aspects related to the different wave types that emerge from this kind of problems are pointed out.  相似文献   

6.
Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665–667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ~ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid–rock interaction and to immiscibility processes.Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient incompatible element-enriched parts of the lithospheric mantle while the trigger for releasing this fluid source was probably carbonatitic/kimberlitic melts derived from greater depths. We suggest that phlogopite mica was an integral part of the enriched lithospheric fluid source and that breakdown of this mica releases K and radiogenic Sr into a fluid phase. The resulting fluids operate as a major metasomatic agent in the sub-continental lithospheric mantle as reflected by the isotopic composition and trace element patterns of G10 garnets.  相似文献   

7.
This paper introduces a 100 MPa water gas twophase fluid pressurization device.The device can provide 100 MPa gas pressure and 200 MPa liquid pressure for small volume(20 mL) high-pressure experimental devices.This device can make the pressure control independent of the temperature control without changing the material components of the system.The resolution of this device in adjusting the pressure is ±0.2 MPa in the process of boosting and depressurizing.This pressure boosting device generates very little vibration during work and it can be used in experiments with strict requirements on vibration.As a thermodynamic parameter,pressure has a great influence on matter.In the field of experimental geochemistry,pressure is not only an experimental method and an extreme condition but an important physical parameter independent of temperature and chemical composition.  相似文献   

8.
A parallel soil–structure interaction (SSI) model is presented for applications on distributed computer systems. Substructring method is applied to the SSI system and a coupled finite–infinite element based parallel computer program is developed. In the SSI system, infinite elements are used to represent the soil which extends to infinity. In this case, a large finite element mesh is required to define the near field for reliable predictions. The resulting large-scale problems are solved on distributed computer systems in this study. The domain is represented by separated substructures and an interface. The number of substructures are determined by the available processors in the parallel platform. To avoid the formation of large interface equations, smaller interface equations are distributed to processors while substructure contributions are performed. This saves a lot of memory storage and computational effort. Direct solution techniques are used for the solution of interface and substructure equation systems. The program is investigated through some example problems. The example problems exposed the need for solving large-scale problems in order to reach better results. The results of the example problems demonstrated the benefits of the parallel SSI algorithm.  相似文献   

9.
This work presents a random field model of disease attribute (incidence, mortality etc.) that transfers the study of the attribute distribution from the original spatiotemporal domain onto a lower-dimensionality traveling domain that moves along the direction of disease velocity. The partial differential equations connecting the disease attribute covariances in the original and the traveling domain are derived with coefficients that are functions of the disease velocity. These equations offer epidemiologic insight concerning the strength of the space–time dependence between the disease attribute values in the two domains. The traveling disease model has certain theoretical and computational advantages in the study and prediction of space–time disease attribute distributions in conditions of uncertainty. Estimates of the disease attribute are derived in the traveling domain and then used to generate maps of space–time disease attribute distribution in the original domain. The theoretical model is illustrated and additional insight is gained by means of a numerical mortality simulation study, which shows that the proposed model is at least as accurate but computationally more efficient than mainstream mapping techniques of higher dimensionality. These findings concerning the very good predictability of the proposed model also strongly support its adequacy to represent the space–time mortality distribution.  相似文献   

10.
Eastward-propagating patterns in anomalous potential temperature and salinity of the Southern Ocean are analyzed in the output of a 1000-year simulation of the global coupled atmosphere–ocean GCM ECHO-G. Such features can be associated with the so-called Antarctic Circumpolar Wave (ACW). It is found that time–longitude diagrams that have traditionally been used to aid the visualization of the ACW are strongly influenced by the width of the bandpass time filtering. This is due to the masking of considerable low-frequency variability that occurs over a broad range of time scales. Frequency–wavenumber analysis of the ACW shows that the eastward-propagating waves do have preferred spectral peaks, but that both the period and wavenumber change erratically when comparing different centuries throughout the simulation. The variability of the ACW on a variety of time scales from interannual to centennial suggests that the waiting time for a sufficient observational record to determine the time scale of variability of the real world ACW (and the associated decadal time scale predictability of climate for southern landmasses) will be a very long one.Responsible Editor: Dirk Olbers  相似文献   

11.
The Global Coupled Ionosphere–Thermosphere-Electrodynamics Model developed at Institute of Geology and Geophysics, Chinese Academy of Sciences (GCITEM-IGGCAS), is introduced in this paper. This new model self-consistently calculates the time-dependent three-dimensional (3-D) structures of the main thermospheric and ionospheric parameters in the height range from 90 to 600 km, including neutral number density of major species O2, N2, and O and minor species N(2D), N(4S), NO, He and Ar; ion number densities of O+ ,O2+, N2+, NO+, N+ and electron; neutral, electron and ion temperature; and neutral wind vectors. The mid- and low-latitude electric fields can also be self-consistently calculated. GCITEM-IGGCAS is a full 3-D code with 5° latitude by 7.5° longitude cells in a spherical geographical coordinate system, which bases on an altitude grid. We show two simulations in this paper: a March Equinox one and a June Solstice one, and compare their simulation results to MSIS00 and IRI2000 empirical model. GCITEM-IGGCAS can reproduce the main features of the thermosphere and ionosphere in both cases.  相似文献   

12.
The statistics of magnetosphere–ionosphere (MI) coupling derived from a two-month long run of the Lyon–Fedder–Mobarry (LFM) global simulation model are investigated. MI coupling characteristics such as polar cap potential and field-aligned current (FAC), downward Poynting flux and vorticity of ionospheric convection are compared with observed statistical averages and with results from the Weimer 05 empirical model. The comparisons for eight different IMF clock-angle orientations show that the LFM model produces reasonably accurate average distributions of the Region I and Region II currents. Both current systems have average amplitudes similar to those observed by the Iridium satellite constellation; however, the average LFM amplitudes are smaller by a factor of two compared with the values from the Weimer 05 model. The comparisons of polar cap potential show that the LFM model produces reasonable patterns of ionospheric convection, but the average cross polar cap potential (CPCP) is greater than the observed results by a factor of approximately 2 and greater than Weimer 05 by a factor of 1.5. The differences in convection in LFM results relative to the Weimer 05 model accounts for much of the difference in the Poynting flux patterns and integrated power produced by the two models. The comparisons of average ionospheric field-aligned vorticity show good agreement on the dayside; however, the LFM model gives higher nightside vorticity which may imply that the ionospheric conductance on the nightside is too small in the simulation.  相似文献   

13.
The ground acceleration is usually modeled as a filtered Gaussian process. The most common model is a Tajimi–Kanai (TK) filter that is a viscoelastic Kelvin–Voigt unit (a spring in parallel with a dashpot) carrying a mass excited by a white noise (acceleration at the bedrock). Based upon the observation that every real material exhibits a power law trend in the creep test, in this paper it is proposed the substitution of the purely viscous element in the Kelvin Voigt element with the so called springpot that is an element having an intermediate behavior between purely elastic (spring) and purely viscous (dashpot) behavior ruled by fractional operator. With this choice two main goals are reached: (i) The viscoelastic behavior of the ground may be simply characterized by performing the creep (or the relaxation) test on a specimen of the ground at the given site; (ii) The number of zero crossing of the absolute acceleration at the free field that for the classical TK model is \(\infty \) for a true white noise acceleration, remains finite for the proposed model.  相似文献   

14.
This study systematically investigates the entire parameter space of the Green–Ampt model for water infiltration and allows for arbitrary constant hydraulic head boundary conditions, any column inclination, hydrophilic and hydrophobic porous media, and a nonzero initial cumulative infiltration. There are five infiltration and five liquid-withdrawal scenarios which differ with respect to the direction of flow and the sign of the acceleration of the liquid. We present analytical solutions for these flow scenarios and 2D phase diagrams that show which flow scenario is predicted depending on the model parameters. All liquid infiltration scenarios, except accelerating downward infiltration (ADI), have already been reported by Green and Ampt. For liquid withdrawal, however, only decelerating downward flow has previously been reported, which is representative of drainage to the water table. We present experimental evidence that ADI may occur in hydrophobic media.  相似文献   

15.
The dynamic through–soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM–FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernoulli beams. This formulation has been enhanced to include the presence of linear superstructures founded on pile groups, so that structure–soil–structure interaction (SSSI) can be investigated making use of a direct methodology with an affordable number of degrees of freedom. The influence of SSSI on lateral spectral deformation, vertical and rotational response, and shear forces at pile heads, for several configurations of shear one-storey buildings, is addressed. Maximum response spectra are also presented. SSSI effects on groups of structures with similar dynamic characteristics have been found to be important. The system response can be either amplified or attenuated according to the distance between adjacent buildings, which has been related to dynamic properties of the overall system.  相似文献   

16.
The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).  相似文献   

17.
Spatial models to describe dependent georeferenced data are applied in different fields and, particularly, are used to analyze earth and environmental data. Most of these applications are carried out under Gaussian spatial models. The Birnbaum–Saunders distribution is a unimodal and positively skewed model which has received considerable attention in several areas, including earth and environmental sciences. In addition, theoretical arguments have been provided to justify its usage in the data modeling from these sciences, at least in the same settings where the lognormal distribution can be employed. This paper presents kriging with external drift based on a Birnbaum–Saunders spatial model. The maximum likelihood method is considered to estimate its parameters. The results obtained in the paper are illustrated by an experimental data set related to agricultural management. Specifically, in this illustration, the spatial variability of magnesium content in the soil as a function of calcium content is analyzed.  相似文献   

18.
We report an analysis of the mechanisms responsible for interannual variability in the Greenland–Iceland–Norwegian (GIN) Seas in a control integration of the HadCM3 coupled climate model. Interannual variability in sea surface temperature (SST) and sea surface salinity (SSS) is dominated by a quasi-periodic ∼7-year signal. Analyses show that the mechanism involves a competition between convection and advection. Advection carries cold, fresh, Arctic water over warm, salty, Atlantic water, while convection periodically mixes these two water masses vertically, raising SST. Convection is able to raise SST because of the presence of a subsurface temperature maximum. The GIN Seas convection in HadCM3 is forced by wind stress anomalies related to the North Atlantic Oscillation (NAO). The consequent SST anomalies feedback positively to force the atmosphere, resulting in a weak spectral peak (at ∼7 years) in GIN Seas sea level pressure. Although there is no evidence of a similar oscillation in reality, key aspects of the simulated mechanism may be relevant to understanding variability in the real GIN Seas. In particular, the potential for increases in convection to raise SST offers a possible new explanation for increases in SST that occurred between the 1960s and the late 1980s/early 1990s. These SST increases may have contributed to the observed sea-ice retreat. In addition, a positive feedback between GIN Seas SST and the atmosphere could contribute to the persistence of the NAO, potentially helping to explain its red spectrum or recent northeastward shift.
Sonia R. Gamiz-FortisEmail:
  相似文献   

19.
An n-species stochastic Gilpin–Ayala cooperative model was investigated in this study. The Lyapunov function and the M-matrix method were applied to study the stability of the solutions. Sufficient conditions for the existence of a global positive solution of the Gilpin–Ayala cooperative model were established. Certain asymptotically stable results of a global positive solution of the cooperative model and its domain of attraction were estimated. That main objective of this study is to provide corrections for errors in some theorems given in the work of Lian et al. (2007). The errors of Theorems 2, 3, 5, and 6 from the published work appeared in the parameters θ i and p ii .  相似文献   

20.
Igor Esau 《Ocean Dynamics》2014,64(5):689-705
A turbulence-resolving parallelized atmospheric large-eddy simulation model (PALM) has been applied to study turbulent interactions between the humid atmospheric boundary layer (ABL) and the salt water oceanic mixed layer (OML). The most energetic three-dimensional turbulent eddies in the ABL–OML system (convective cells) were explicitly resolved in these simulations. This study considers a case of shear-free convection in the coupled ABL–OML system. The ABL–OML coupling scheme used the turbulent fluxes at the bottom of the ABL as upper boundary conditions for the OML and the sea surface temperature at the top of the OML as lower boundary conditions for the ABL. The analysis of the numerical experiment confirms that the ABL–OML interactions involve both the traditional direct coupling mechanism and much less studied indirect coupling mechanism (Garrett Dyn Atmos Ocean 23:19–34, 1996). The direct coupling refers to a common flux-gradient representation of the air–sea exchange, which is controlled by the temperature difference across the air–water interface. The indirect coupling refers to thermal instability of the Rayleigh–Benard convection, which is controlled by the temperature difference across the entire mixed layer through formation of the large convective eddies or cells. The indirect coupling mechanism in these simulations explained up to 45 % of the ABL–OML co-variability on the turbulent scales. Despite relatively small amplitude of the sea surface temperature fluctuations, persistence of the OML cells organizes the ABL convective cells. Water downdrafts in the OML cells tend to be collocated with air updrafts in the ABL cells. The study concludes that the convective structures in the ABL and the OML are co-organized. The OML convection controls the air–sea turbulent exchange in the quasi-equilibrium convective ABL–OML system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号