首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
低频成分缺失和地下速度强烈变化会导致严重的周期跳现象,是地震数据全波形反演的难题.通过对地震数据加时间阻尼和时间积分降主频处理,提出了一种可有效去除周期跳现象的多主频波场时间阻尼全波形反演方法.由浅到深的速度不准确会造成波形走时失配和走时失配的累积.浅部速度的准确反演可有效地减小深部波形走时失配与周期跳现象.对地震数据施加时间阻尼得到时间阻尼数据,利用不同阻尼值的时间阻尼地震数据实现由浅到深的全波形反演.低主频波场的周期跳现象相对高主频波场的要弱.对地震波场进行不同阶的时间积分以得到不同主频的波场,把低主频波场的全波形反演结果作为高主频波场全波形反演的初始模型.应用缺失4 Hz以下频谱成分的二维盐丘模型合成数据验证所提出的全波形反演方法的正确性和有效性,数值试验结果显示多主频波场的时间阻尼全波形反演方法对缺失低频成分地震数据和地下速度强烈变化具有很好的适应性.  相似文献   

2.
Finite‐difference frequency‐domain modelling of seismic wave propagation is attractive for its efficient solution of multisource problems, and this is crucial for full‐waveform inversion and seismic imaging, especially in the three‐dimensional seismic problem. However, implementing the free surface in the finite‐difference method is nontrivial. Based on an average medium method and the limit theorem, we present an adaptive free‐surface expression to describe the behaviour of wavefields at the free surface, and no extra work for the free‐surface boundary condition is needed. Essentially, the proposed free‐surface expression is a modification of density and constitutive relation at the free surface. In comparison with a direct difference approximate method of the free‐surface boundary condition, this adaptive free‐surface expression can produce more accurate and stable results for a broad range of Poisson's ratio. In addition, this expression has a good performance in handling the lateral variation of Poisson's ratio adaptively and without instability.  相似文献   

3.
三维逆时偏移GPU/CPU机群实现方案研究   总被引:1,自引:1,他引:0       下载免费PDF全文
叠前逆时偏移是当前最为准确的地震成像方法,由于计算量大、存储量大等原因需要合适的实现策略和高效的计算平台.本文以高阶有限差分逆时偏移为基础,重点讨论了在GPU上实现需要解决的显存不足问题和人工边界问题.利用区域分解技术可以在当前GPU上高效地实现任意生产规模的三维逆时偏移成像,不会受到GPU显存规模的制约.常规最佳匹配层边界条件边界区域控制方程与内部区域差异较大,不适于GPU高速运算.本文在GPU上实现近似最佳匹配层(NPML)边界条件,使得高阶有限差分计算不需要分支判断,边界区域辅助波场的存储量也较低,保证了在GPU上进行波场传播的高效性.三维理论数据和实际资料成像结果表明了本文方法的正确性.  相似文献   

4.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.  相似文献   

5.
In this paper we propose a 3D acoustic full waveform inversion algorithm in the Laplace domain. The partial differential equation for the 3D acoustic wave equation in the Laplace domain is reformulated as a linear system of algebraic equations using the finite element method and the resulting linear system is solved by a preconditioned conjugate gradient method. The numerical solutions obtained by our modelling algorithm are verified through a comparison with the corresponding analytical solutions and the appropriate dispersion analysis. In the Laplace‐domain waveform inversion, the logarithm of the Laplace transformed wavefields mainly contains long‐wavelength information about the underlying velocity model. As a result, the algorithm smoothes a small‐scale structure but roughly identifies large‐scale features within a certain depth determined by the range of offsets and Laplace damping constants employed. Our algorithm thus provides a useful complementary process to time‐ or frequency‐domain waveform inversion, which cannot recover a large‐scale structure when low‐frequency signals are weak or absent. The algorithm is demonstrated on a synthetic example: the SEG/EAGE 3D salt‐dome model. The numerical test is limited to a Laplace‐domain synthetic data set for the inversion. In order to verify the usefulness of the inverted velocity model, we perform the 3D reverse time migration. The migration results show that our inversion results can be used as an initial model for the subsequent high‐resolution waveform inversion. Further studies are needed to perform the inversion using time‐domain synthetic data with noise or real data, thereby investigating robustness to noise.  相似文献   

6.
To simulate the seismic signals that are obtained in a marine environment, a coupled system of both acoustic and elastic wave equations is solved. The acoustic wave equation for the fluid region simulates the pressure field while minimizing the number of degrees of freedom of the impedance matrix, and the elastic wave equation for the solid region simulates several elastic events, such as shear waves and surface waves. Moreover, by combining this coupled approach with the waveform inversion technique, the elastic properties of the earth can be inverted using the pressure data obtained from the acoustic region. However, in contrast to the pure acoustic and elastic cases, the complex impedance matrix for the coupled media does not have a symmetric form because of the boundary (continuity) condition at the interface between the acoustic and elastic elements. In this study, we propose a manipulation scheme that makes the complex impedance matrix for acoustic–elastic coupled media to take a symmetric form. Using the proposed symmetric matrix, forward and backward wavefields are identical to those generated by the conventional approach; thus, we do not lose any accuracy in the waveform inversion results. However, to solve the modified symmetric matrix, LDLT factorization is used instead of LU factorization for a matrix of the same size; this method can mitigate issues related to severe memory insufficiency and long computation times, particularly for large‐scale problems.  相似文献   

7.
Full waveform inversion for reflection events is limited by its linearised update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model and, thus, use a gradient given by the oriented time‐domain imaging method. Specifically, we apply the oriented time‐domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to two‐dimensional or three‐dimensional velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearised representations of the reflection response. To eliminate the crosstalk artifacts between different parameters, we utilise what we consider being an optimal parametrisation for this step. To do so, we extend the prestack time‐domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high‐wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.  相似文献   

8.
叠前逆时偏移等基于波场互相关原理的地球物理方法存在极大的计算与存储需求,因此采用合适的波场重构方法显得尤为重要.常规的随机边界法容易产生成像噪声,而有效边界法在三维情况仍难以实现,检查点技术具有内存要求小的特点,但存在较高的重算率,因此本文提出了插值原理的检查点技术波场重构方法.在满足Nyquist采样定理的前提下对相邻检查点间的波场进行规则抽样,将抽样波场作为插值节点,运用多项式插值算法重构任意时刻的波场,从而避免优化检查点技术反复递推造成的计算效率问题.数值实验表明:插值检查点重构算法能有效的恢复波场,其中三次样条插值重构精度最高,而牛顿法插值法计算代价较小适合于快速重构.经Sigsbee模型的叠前逆时偏移证明了插值算法的可行性,并且极大的提高了波场重构的计算效率.三维模型分析得出在增加少量存储的情况下插值重构法的重算率大幅度降低,存储量减少为有效边界法的7.1%,对于三维尺度的叠前逆时偏移有实际意义.  相似文献   

9.
不依赖子波、基于包络的FWI初始模型建立方法研究   总被引:3,自引:3,他引:0       下载免费PDF全文
地震全波形反演(FWI)从理论走向实际面临着诸多难题,其中之一就是需要一个较高精度的初始模型,另一个难题就是需要一个较为精确的震源子波,初始模型和震源子波的准确程度严重影响着全波形反演的最终结果.为此,本文提出了不依赖子波、基于包络的FWI初始模型建立的方法,建立了相应的目标函数,推导出了反演的梯度,给出了伴随震源的表达式,理论上分析了不依赖子波FWI的可行性.在数值试验中,讨论了参考道的选取方式,通过分析归一化目标函数收敛速率,认为近偏移距参考道优于远偏移距参考道,在地震数据含干扰噪音时,平均道作为参考道要优于最小偏移距参考道.通过包络、包络对数、包络平方三种目标函数反演结果的比较,发现包络对数目标函数对深层的反演效果最好.通过不同子波的试验进一步验证了本方法的正确性.  相似文献   

10.
Waveform inversion can lead to faint images for later times due to geometrical spreading. The proper scaling of the steepest-descent direction can enhance faint images in waveform inversion results. We compare the effects of different scaling techniques in waveform inversion algorithms using the steepest-descent method. For the scaling method we use the diagonal of the pseudo-Hessian matrix, which can be applied in two different ways. One is to scale the steepest-descent direction at each frequency independently. The other is to scale the steepest-descent direction summed over the entire frequency band. The first method equalizes the steepest-descent directions at different frequencies and minimizes the effects of the band-limited source spectrum in waveform inversion. In the second method, since the steepest-descent direction summed over the entire frequency band is divided by the diagonal of the pseudo-Hessian matrix summed over the entire frequency band, the band-limited property of the source wavelet spectrum still remains in the scaled steepest-descent directions. The two scaling methods were applied to both standard and logarithmic waveform inversion. For standard waveform inversion, the method that scales the steepest-descent direction at every frequency step gives better results than the second method. On the other hand, logarithmic waveform inversion is not sensitive to the scaling method, because taking the logarithm of wavefields automatically means that results for the steepest-descent direction at each frequency are commensurate with each other. If once the steepest-descent directions are equalized by taking the logarithm of wavefields in logarithmic waveform inversion, the additional equalizing effects by the scaling method are not as great as in conventional waveform inversion.  相似文献   

11.
张盼  邢贞贞  胡勇 《地球物理学报》2019,62(10):3974-3987
在常规地震采集中,被动源地震波场往往被视为噪声而去除,这就造成了部分有用信息的丢失.在目标区进行主动源和被动源弹性波地震数据的多分量混合采集,并对两种数据进行联合应用,使其在照明和频带上优势互补,能显著提高成像和反演的质量.本文针对两种不同类型的主被动源混采地震数据,分别提出了相应的联合全波形反演方法.首先,针对主动源与瞬态被动源弹性波混采地震数据,为充分利用被动源对深部照明的优势,同时有效压制被动震源点附近的成像异常值,提出了基于动态随机组合的弹性波被动源照明补偿反演策略.然后,针对低频缺失主动源与背景噪声型被动源弹性波混采地震数据,为充分利用被动源波场携带的低频信息,并避免对被动源的定位和子波估计,提出了基于地震干涉与不依赖子波算法的弹性波主被动源串联反演策略.最后,分别将两种方法在Marmousi模型上进行反演测试.结果说明,综合利用主动源和被动源弹性波混采地震数据,不仅能增强深部弹性参数反演效果,还能更好地构建弹性参数模型的宏观结构,并有助于缓解常规弹性波全波形反演的跳周问题.  相似文献   

12.
地震波干涉偏移和偏移反演成像是近年来十分活跃的两个研究领域.干涉偏移提供了一个新的地震波数据成像工具,而偏移反演则提供了高逼近度地震成像.二者的共同目的是改善传统直接偏移方法的成像效果,展宽成像区域并提高成像的分辨率.本文研究干涉偏移方法和偏移反演方法对于地震成像效果的影响,探讨二者在提高成像分辨率上的异同.对于偏移反演,通过建立正则化模型,研究了预条件共轭梯度迭代正则化方法及改进措施,并通过绕射点模型数值模拟验证了该方法比直接偏移能够提高振幅的保真度和成像的分辨率.对于干涉偏移和偏移反演这两种方法,对层速度地震模型进行了数值模拟.结果表明干涉偏移和偏移反演成像方法比传统的偏移方法在成像效果上是更加有效的,因而对于实际的地震成像问题很有应用前景.  相似文献   

13.
不依赖源子波的跨孔雷达时间域波形反演   总被引:1,自引:0,他引:1       下载免费PDF全文
刘四新  孟旭  傅磊 《地球物理学报》2016,59(12):4473-4482
波形反演是近年来较热门的反演方法,其分辨率可以达到亚波长级别.在波形反演的实际应用中,源子波的估计十分重要.传统方法使用反褶积来估计源子波并随着反演过程更新,该方法在合成数据波形反演中效果较好,但在实际数据反演过程中存在一系列的问题.由于实际数据信噪比较低,在源子波估计过程中需要大量的人为干涉,且结果并不一定可靠.本文使用一种基于褶积波场的新型目标函数,令反演过程不再依赖源子波.详细推导了针对跨孔雷达波形反演的梯度及步长公式,实现介电常数和电导率的同步反演.针对一个合成数据模型同时反演介电常数和电导率,结果表明该方法能够反演出亚波长尺寸异常体的形状和位置.接着,将该方法应用到两组实际数据中,并与基于估计源子波的时间域波形反演结果进行比较.结果表明不依赖源子波的时间域波形反演结果分辨率更高,也更准确.  相似文献   

14.
We present a new workflow for imaging damped three‐dimensional elastic wavefields in the Fourier domain. The workflow employs a multiscale imaging approach, in which offset lengths are laddered, where frequency content and damping of the data are changed cyclically. Thus, the inversion process is launched using short‐offset and low‐frequency data to recover the long spatial wavelength of the image at a shallow depth. Increasing frequency and offset length leads to the recovery of the fine‐scale features of the model at greater depths. For the fixed offset, we employ (in the imaging process) a few discrete frequencies with a set of Laplace damping parameters. The forward problem is solved with a finite‐difference frequency‐domain method based on a massively parallel iterative solver. The inversion code is based upon the solution of a least squares optimisation problem and is solved using a nonlinear gradient method. It is fully parallelised for distributed memory computational platforms. Our full‐waveform inversion workflow is applied to the 3D Marmousi‐2 and SEG/EAGE Salt models with long‐offset data. The maximum inverted frequencies are 6 Hz for the Marmousi model and 2 Hz for the SEG/EAGE Salt model. The detailed structures are imaged successfully up to the depth approximately equal to one‐third of the maximum offset length at a resolution consistent with the inverted frequencies.  相似文献   

15.
巨大的计算量是制约全波形反演(FWI)生产实用化的难题之一.为此,本文提出了一种高效的波场迭代解法,将其应用于频率域常密度声波方程FWI,并给出了详细的反演流程.通过建立用于波场迭代的目标函数,推导相应梯度、步长公式,新方法将反演中波场正传和残差波场反传过程转化为无约束优化问题,从理论上分析了新方法的计算效率显著高于常规FWI.在数值试验中,本文方法通过几次迭代便能获得高精度的正传、残差反传波场,收敛速度明显高于未经预处理的GMRES方法.进一步引入高效编码策略,新方法的计算时间约为常规编码FWI的1/8,与理论分析结果吻合(波场迭代次数为8,模型未知量个数约为7万),且波场迭代次数为6时,反演效果已与常规编码FWI相近.  相似文献   

16.
采用弹性波全波形反演方法精确重建深部金属矿多参数模型,建模过程采用基于地震照明的反演策略.首先给出基于照明理论的观测系统可视性定义,利用可视性分析构建新的目标函数,对反演目标可视性较高的炮检对接收到的地震记录在波场匹配时占有更高的权重,确保了参与反演计算中的地震数据的有效性;其次将给定观测系统对地下介质的弹性波场照明强度作为优化因子,根据地震波在波阻抗界面处的能量分配特点,自适应补偿波场能量分布和优化速度梯度,以提高弹性波全波形反演过程的稳定性和反演结果的精度.理论模型和金属矿模型反演试验结果表明,基于可视性分析和能量补偿的反演策略可以使弹性波全波形反演更快地收敛到目标函数的全局极小值,获得适用于金属矿高分辨率地震偏移成像的多参数模型.  相似文献   

17.
In order to account for the effects of elastic wave propagation in marine seismic data, we develop a waveform inversion algorithm for acoustic‐elastic media based on a frequency‐domain finite‐element modelling technique. In our algorithm we minimize residuals using the conjugate gradient method, which back‐propagates the errors using reverse time migration without directly computing the partial derivative wavefields. Unlike a purely acoustic or purely elastic inversion algorithm, the Green's function matrix for our acoustic‐elastic algorithm is asymmetric. We are nonetheless able to achieve computational efficiency using modern numerical methods. Numerical examples show that our coupled inversion algorithm produces better velocity models than a purely acoustic inversion algorithm in a wide variety of cases, including both single‐ and multi‐component data and low‐cut filtered data. We also show that our algorithm performs at least equally well on real field data gathered in the Korean continental shelf.  相似文献   

18.
Edge reflections are inevitable in numerical modeling of seismic wavefields, and they are usually attenuated by absorbing boundary conditions. However, the commonly used perfectly matched layer (PML) boundary condition requires special treatment for the absorbing zone, and in three-dimensional (3D) modeling, it has to split each variable into three corresponding variables, which increases the computing time and memory storage. In contrast, the hybrid absorbing boundary condition (HABC) has the advantages such as ease of implementation, less computation time, and near-perfect absorption; it is thus able to enhance the computational efficiency of 3D elastic wave modeling. In this study, a HABC is developed from two-dimensional (2D) modeling into 3D modeling based on the 1st Higdon one way wave equations, and a HABC is proposed that is suitable for a 3D elastic wave numerical simulation. Numerical simulation results for a homogenous model and a complex model indicate that the proposed HABC method is more effective and has better absorption than the traditional PML method.  相似文献   

19.
The seismic inversion problem is a highly non‐linear problem that can be reduced to the minimization of the least‐squares criterion between the observed and the modelled data. It has been solved using different classical optimization strategies that require a monotone descent of the objective function. We propose solving the full‐waveform inversion problem using the non‐monotone spectral projected gradient method: a low‐cost and low‐storage optimization technique that maintains the velocity values in a feasible convex region by frequently projecting them on this convex set. The new methodology uses the gradient direction with a particular spectral step length that allows the objective function to increase at some iterations, guarantees convergence to a stationary point starting from any initial iterate, and greatly speeds up the convergence of gradient methods. We combine the new optimization scheme as a solver of the full‐waveform inversion with a multiscale approach and apply it to a modified version of the Marmousi data set. The results of this application show that the proposed method performs better than the classical gradient method by reducing the number of function evaluations and the residual values.  相似文献   

20.
优化15点频率-空间域有限差分正演模拟   总被引:4,自引:4,他引:0       下载免费PDF全文
频率域正演是频率域波形反演的基础,有效快速的正演差分格式可以保证反演结果的精度和效率.本文以用较小的系数矩阵带宽来高效地压制频域正演频散为目标,综合利用加权平均算子、平均加速度项和优化系数三种方法,提出了优化15点差分格式;并且采用压缩存储方式来存放大型系数矩阵,极大地缩小了内存使用量;进而结合最佳匹配层(PML)边界条件,明显地压制了边界反射;最后,通过与前人方法的对比验证,证实了本方法可以在不明显增加计算量的情况下,较好地压制频散.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号