首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lacustrine fills, including those of oxbow lakes in river floodplains, often hold valuable sedimentary and biological proxy records of palaeo-environmental change. Precise dating of accumulated sediments at levels throughout these records is crucial for interpretation and correlation of (proxy) data existing within the fills. Typically, dates are gathered from multiple sampled levels and their results are combined in age-depth models to estimate the ages of events identified between the datings. In this paper, a method of age-depth modelling is presented that varies the vertical accumulation rate of the lake fill based on continuous sedimentary data. In between Bayesian calibrated radiocarbon dates, this produces a modified non-linear age-depth relation based on sedimentology rather than linear or spline interpolation.The method is showcased on a core of an infilled palaeomeander at the floodplain edge of the river Rhine near Rheinberg (Germany). The sequence spans from ∼4.7 to 2.9 ka cal BP and consists of 5.5 m of laminated lacustrine, organo-clastic mud, covered by ∼1 m of peaty clay. Four radiocarbon dates provide direct dating control, mapping and dating in the wider surroundings provide additional control. The laminated, organo-clastic facies of the oxbow fill contains a record of nearby fluvial-geomorphological activity, including meander reconfiguration events and passage of rare large floods, recognized as fluctuations in coarseness and amount of allochthonous clastic sediment input. Continuous along-core sampling and measurement of loss-on-ignition (LOI) provided a fast way of expressing the variation in clastic sedimentation influx from the nearby river versus autochthonous organic deposition derived from biogenic production in the lake itself. This low-cost sedimentary proxy data feeds into the age-depth modelling. The sedimentology-modelled age-depth relation (re)produces the distinct lithological boundaries in the fill as marked changes in sedimentation rate. Especially the organo-clastic muddy facies subdivides in centennial intervals of relative faster and slower accumulation. For such intervals, sedimentation rates are produced that deviate 10–20% from that in simpler stepped linear age-models. For irregularly laminated muddy intervals of the oxbow fill – from which meaningful sampling for radiocarbon dating is more difficult than from peaty or slowly accumulating organic lake sediments – supplementing spotty radiocarbon sampling with continuous sedimentary proxy data creates more realistic age-depth modelling results.  相似文献   

2.
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the 14C calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event.  相似文献   

3.
The absence of datable macrofossils in six sediment cores recovered from northern Ungava (Canada) lakes constituted a major challenge for the establishment of reliable lacustrine chronologies for the Holocene. Consequently, AMS radiocarbon dating of humic acids was used to assess age–depth in the cores. The reliability of the radiocarbon results near some of the core tops was evaluated through 210Pb dating. The offset of sediment radiocarbon ages with their most probable time of formation and deposition in the lakes was found to be in the order of about 1000 years for recently deposited sediments. However, the basal dates in one core covering the entire postglacial period yielded a remarkable fit with previously established dates performed on marine shells at the maximum marine limit. Hence, the aim of this study was to describe how the two dating methods can be combined to address some of the problems paleolimnologists face when trying to assign ages to high-latitude lake sediment records. Suggestions are made for improving the quality of age–depth models developed in future studies for northernmost Québec and other comparable regions where paleolimnologists must deal with the combined challenges of very slow sediment accumulation rates in lakes, an extreme paucity of datable material and the sequestration of old carbon in the watersheds.  相似文献   

4.
Lop Nur is a playa lake occupying the lowest part of the Tarim Basin, northwestern China, and is now a desolate and barren region. In the past decades, the ages of the lacustrine sediments from the lake were determined mainly by radiocarbon dating on bulk sediment. In this study, both optically stimulated luminescence (OSL) and radiocarbon methods were used to date the sediments from a pit in the central part of the lake. The OSL ages obtained for ten samples range from 0.5 to 9.4 ka, and are in stratigraphic order except for one sample. The 14C ages obtained for twenty-two bulk sediment samples range from 5.8 to 30.2 cal ka BP with erratic distribution. Based on the comparison of 14C with OSL ages and their age-depth models, we argue that the OSL ages are relatively reliable. The disequilibria in the U decay chain for some samples are deduced from the comparison of the NAA and TSAC results. We suggest that the OSL dating technique should preferably be applied to the playa sediments from Lop Nur, but the disequilibria in the U decay chain should be considered in evaluating dose rates. Additionally, radiocarbon reservoir effects in lakes in western China are reviewed.  相似文献   

5.
More than a dozen new radiocarbon dates reconstruct the eruptive history of Ceboruco volcano. Six of these further constrain previous results for the important plinian Jala eruption, which occurred near 1060 ± 55 yr BP. A calibrated radiocarbon age of AD 990–1020 was obtained as best overlap range for all samples. Pottery fragments found directly underneath the pumice deposit indicate that this area was inhabited by human populations that witnessed the eruption. This age therefore represents an important time marker in the prehistory of this region, because an area of > 560 km2 was devastated and covered by a thickness of > 50 cm of pumice and ash fallout.  相似文献   

6.
《Geofísica Internacional》2014,53(4):365-383
Climatic changes are reflected in variations of different parameters. Sequences of lake sediments are good sources of this information because they provide continuous and detailed records of palaeoclimatic changes. In order to determine the changes in climate in SE Pampas plain, in this paper we present a series of rock magnetic studies performed on a bottom core collected from Lake La Brava (Argentina).In order to establish lake level variations, we also measure total sulphur, organic and inorganic carbon (TS, TOC and TIC) content, alkaline elements, light and heavy metals and changes in vegetation communities. Five radiocarbon age determinations were made from samples of organic-rich clay and calibrated ages were calculated. The averaged sediment accumulation rate is 1.3 mm/yr and the sequence represents a temporal extent of about 4800 calibrated years before the present (cal. BP).The main aim was to reconstruct the hydrological balance of the lake, the changes in erosional strength and sediment supply within the catchment area since the Middle Holocene, and to explore the extent to which these may be linked to changes in climate and/or human activities. The results of this work and previous studies suggest periodic changes from cooler to warmer and humid conditions. Relationships between submerged and emergent plants are consistent with the behaviour of magnetic susceptibility. TOC changes suggest wet environment during magnetic enhancement. Floods and lower lake level events were identified in detail. Changes in sediment contribution and depositional processes for the last 50 cal. BP are caused by human impact, particularly by the use of natural resources.  相似文献   

7.
A borehole programme on the floodplain of the River Mark has revealed an important fossilized fluvial system, now invisible in the present landscape. The palaeovalley meanders gently and is up to 200 m wide and 8 m deep. It is eroded in older fluvial sands, probably of Pleniglacial age, overlain by an aeolian cover of varying thickness. As indicated by several radiocarbon dates of the valley fill deposits, the erosion of the system took place in the pre-Holocene period. The filling proceeded in three phases. The morphological implications of each phase and their spatial extension are demonstrated. Most of the vertical fill consists of a sandy loam to loam. Around 9000 yr BP, the accumulation of an organic facies (mainly woodpeat) started, followed by the deposition of a weak fluvial clay. At 1400 yr BP the filling of the palaeovalley was complete.  相似文献   

8.
OSL, radiocarbon dating of pedogenic carbonate and tephrochronology have been used in an attempt to provide a detailed and reliable chronology for Birdlings Flat loess, a thick, proximal loess found on the lower flanks of Banks Peninsula, Canterbury, New Zealand. In a ca 15 m thick section at Ahuriri Quarry the Kawakawa tephra isochron of 26,500 cal. yr BP is identified at a depth of ca. 1.35 m on the basis of glass counting and electron microprobe fingerprinting. Radiocarbon ages of filamentous or root pseudomorph carbonate increase down section from ca. 10,000 cal. yr BP at 2.80 m to ca. 30,000 14C yr BP at 10.90 m. Ages from carbonate lining cracks are often out of sequence, indicating deep percolation by bypass flow down preferential flow paths. OSL ages show reversals with respect to each other, carbonate radiocarbon ages, and with the position and accepted age of Kawakawa tephra. Coincident radiocarbon and OSL ages at 3.85 m depth indicate that OSL ages are underestimates by at least 20%. Before OSL can be deemed a high accuracy dating method of the quatzo-feldspathic loess of South Island, New Zealand, more research into the causes of age underestimation and age reversals must be carried out. The last major episode of loess accumulation on the flanks of Banks Peninsula in Canterbury began before ca. 30,000 14C yr BP (ca. 35,000 cal. yr BP) and possibly before 43,000 yr based on OSL.  相似文献   

9.
AMS radiocarbon age dating of planktonic foraminifera in volcaniclastic deposits on Loihi Seamount yields ages ranging from 590 years before present (y BP) at 10 cm depth to 5,880 y BP at 1,007 cm depth in an 11-m-thick section exposed along inward facing, caldera-bounding faults on the eastern side of Loihi’s summit. The accumulation rate of the deposit was about 0.37 cm/y from 5,880 to 3,300 y BP and it consisted of subequal amounts of alkalic and tholeiitic fragments. The rate slowed dramatically at about 3,300 y BP to an average 0.04 cm/y and the particles that have accumulated since consist mostly of alkalic glass fragments. The decrease in accumulation rate could indicate a decrease in volcanic activity at Loihi beginning about 3,300 y BP. This lower level of activity appears to be continuing today.  相似文献   

10.
The selection and pre-treatment of reliable organic fractions for radiocarbon age determination is fundamental to the development of accurate chronologies. Sampling from tropical lakes is particularly challenging given the adverse preservation conditions and diagenesis in these environments. Our research is the first to examine and quantify the differences between radiocarbon ages from different carbon fractions and pretreatment protocols from tropical lake sediments. Six different organic fractions (bulk organics, pollen concentrate, cellulose, stable polycyclic aromatic carbon (SPAC), macrocharcoal >250 μm and microcharcoal >63 μm) were compared at six different depths along a 1.72 m long core extracted from Sanamere Lagoon, Cape York Peninsula, northern Australia. Acid-base-acid (ABA), modified ABA (30% hydrogen peroxide + ABA), 2chlorOx (a novel cellulose pre-treatment method) and hydrogen pyrolysis (hypy) were used to pre-treat the organic fractions. The oldest date is ∼31,300 calibrated years before present (cal yr BP) and the youngest is ∼2800 cal yr BP, spanning ∼28,500 years. The smallest offset between the minimum and the maximum age for different fractions and across pretreatment methods at a given depth was found to be 832 years (between SPAC and pollen) and the largest ∼16,750 years (between pollen concentrate and SPAC). The SPAC fractions pre-treated with hypy yielded older ages compared to all other fractions in most cases, while bulk organics yielded consistently younger ages. The magnitude and consistency of the offsets and the physical and chemical properties of the tested organic fractions suggest that SPAC is the most reliable fraction to date in tropical lake sediments and that hypy successfully removes exogenous carbon contamination.  相似文献   

11.
A 1075 cm long core (Lz1120) was recovered in the south-eastern part of the Lake Ohrid (Republics of Macedonia and Albania) and sampled for identification of tephra layers. Magnetic susceptibility investigations show rather high magnetic values throughout the core, with peaks unrelated to the occurrence of tephra layers but instead to the relative abundance of detrital magnetic minerals in the sediment. Naked-eye inspection of the core allowed us to identify of two tephra layers, at 896–897 cm and 1070–1075 cm. Laboratory inspection of the grain-size fraction > 125 μm allowed for the identification of a third cryptotephra at 310–315 cm. Major element analyses on glass shards of the tephra layers at 896–897 cm and 1070–1075 cm show a trachytic composition, and indicate a correlation with the regionally dispersed Y-3 and Y-5 tephra layers, dated at ca 30 and 39 cal ka BP. The cryptotephra at 310–315 cm has a mugearitic–benmoreitic composition, and was correlated with the FL eruption of Mt. Etna, dated at 3370 ± 70 cal yr BP. These ages are in agreement with five 14C AMS measurements carried out on plant remains and macrofossils from the lake sediments at different depths along the core.  相似文献   

12.
We studied the apparently old radiocarbon ages from lakes in the dry valleys of Antarctica. The radiocarbon reservoir effect in these lakes results from two components: the inherited age and the residence age. The inherited age is derived from input of old carbon, primarily from subsurface melt of adjacent glaciers. The residence age comes from in situ aging of lake water in an environment sealed from the atmosphere. Our results indicate that surface melt of glaciers introduces little ancient carbon to the lake system, because of rapid gas equilibration with the atmosphere. Subsurface melt in lakes with large glacier cross-sectional areas at the grounding line, however, can contribute a significant amount of ancient carbon, leading to lake-bottom reservoir effects in excess of ∼ 2700 yr. This value can increase to ∼ 20,000 yr immediately at the grounding line. In most lakes, however, surface melt far exceeds that from the subsurface and dilutes the effect of ancient carbon, making the inherited age relatively low. Residence ages generally are on the order of a few thousand years, but can be as much as ∼ 10,000 yr. Because a residence age is reset when the lake loses its ice cover and is exposed to wind-driven mixing, its magnitude can provide important information about lake history.  相似文献   

13.
Lake basins that experience rapid rates of deposition act as high-resolution environmental archives because they produce sedimentary records that have centennial or even decadal resolution. However, identifying target fractions for radiocarbon dating of lake sediments remains problematic because reworked organic material from fluvial catchments can produce anomalously old radiocarbon ages. This study determines the extent to which reworked material from catchment soils impacts radiocarbon dates on pollen and other organic concentrates by comparing radiocarbon dates produced by these techniques against a chronostratigraphic marker in cores from Lake Mapourika, New Zealand. Pollen preferentially preserved and reworked from catchment soils was identified using soil palynology. A technique was then developed to remove reworked pollen types from pollen concentrates extracted from lake sediment. Identification and removal of reworked pollen from pollen concentrates produced ages that were consistently closer to the age of the chronostratigraphic horizon than other organic concentrates. However, these dates were still between 736 and 366 calendar years older than expected. The only organic fractions that reliably reproduced the age of the chronostratigraphic horizon were terrestrial leaf macrofossils, although terrestrial leaf macrofossils isolated from megaturbidite deposits, which are formed by high-energy depositional events, also provided anomalously old ages. The results indicate that leaf material extracted from hemipelagite, which accumulates gradually, is likely to be the only organic fraction to produce reliable chronology in lakes where a component of sedimentation is driven by the fluvial system. The results also demonstrate the importance of conducting a detailed investigation of physical sedimentology before selecting material for radiocarbon dating lake sediments.  相似文献   

14.
The archaeological Shaliuheqiaodong site, located at the junction between the estuary of Shaliu River and the northeast bedrock terrace of Qinghai Lake, is one of the earliest Neolithic Age sites in the Qinghai-Tibetan Plateau (QTP), which is critical for understanding patterns of prehistoric human inhabitation in the high plateau extreme environments. There are only two published radiocarbon ages by far for chronological control. Recently, a new section (Gangcha section) was found, with abundant charcoals and fish bones well-preserved in the matrix of aeolian sediments, providing a good opportunity for a combined study of luminescence and radiocarbon dating. In the current study, we obtained three luminescence ages on aeolian sediment, six radiocarbon ages (three on charcoals and three on fish bones). Our results showed that the luminescence ages (average of 3.2 ± 0.2 ka) are in agreement with charcoal radiocarbon ages (3165–3273 cal a BP) where applicable, and that the lake reservoir effect age of radiocarbon dating was approximately 0.3–0.7 cal ka BP and an average of 0.4 cal ka BP at ∼3.2 cal ka BP (age difference between that of charcoals and fish bones). The prehistoric residence in Qinghai Lake area seemed to be sequenced from 15 ka BP to 3.1 ka BP, based on our data and previously published data altogether. The obvious baked vestiges on the bones of fish and animals, as well as a number of artifacts, indicate that naked carps had become a food resource for prehistoric people at least since 3.2 cal ka BP.  相似文献   

15.
The ecotone between alpine steppe and meadow in the central Tibetan Plateau is sensitive to climate changes. Here we used the pollen records from three lakes in this region to reconstruct the evolution of local vegetation and climate since 8200 cal. yr BP. The history of temperature and precipitation was reconstructed quantitatively with multi-bioclimatic indexes and a transfer function from pollen records. Results show that the steppe/meadow dominated during the period of 8200–6500 cal. yr BP, especially 8200–7200 cal. yr BP, indicating the central Tibetan Plateau was controlled by strong monsoon. The steppe dominated during the periods of 6000–4900, 4400–3900, and 2800–2400 cal. yr BP. The steppe decreased gradually and the meadow expanded during the period of 4900–4400 cal. yr BP. Three century-scale drought events occurred during 5800–4900, 4400–3900 and 2800 cal. yr BP, respectively. The first time when the regional climate shifted to the present level was at 6500 cal. yr BP in the central Plateau. Since 3000 cal. yr BP, the temperature and precipitation have decreased gradually to the present level. However, the cold climate between 700–300 cal. yr BP likely corresponds to the Little Ice Age. Supported by Chinese Academy of Sciences 100 Talents Project (Grant No. 29082762), National Natural Science Foundation of China (Grant Nos. 40671196, 40372085, 49371068, 49871078), and U.S. National Science Foundation (Grant Nos. ATM-9410491, ATM-008194)  相似文献   

16.
In lake sediments where terrestrial macrofossils are rare or absent, AMS radiocarbon dating of pollen concentrates may represent an important alternative solution for developing a robust and high resolution chronology suitable for Bayesian modelling of age-depth relationships. Here we report an application of the heavy liquid density separation approach (Vandergoes and Prior, Radiocarbon 45:479–492, 2003) to Holocene lake sediments from karstic Lake Sidi Ali, Morocco. In common with many karstic lakes, a significant lake 14C reservoir effect of 450–900 yr is apparent, evidenced by paired dates on terrestrial macrofossils and either aquatic (ostracod) or bulk sediment samples. AMS dating of 23 pollen concentrates alongside laboratory standards (bituminous coal, anthracite, IAEA C5 wood) was undertaken. Concentrates were prepared using a series of sodium polytungstate (SPT) solutions of progressively decreasing density (1.9–1.15 g/cm3) accompanied by microscopic analysis of the resulting residues to allow quantification of the terrestrial pollen content. The best fractions (typically precipitating at 1.4–1.2 g/cm3) yielded dateable samples of 0.5–5 mg (from sediment samples of ∼15 g), with C content typically ∼50% by weight. Terrestrial pollen purity ranges from 29% to 88% (μ = 67%), reflecting the challenge of isolating pollen grains from common aquatic algae, e.g. Pediastrum and Botryococcus. A Poisson-process Bayesian depositional model incorporating radiocarbon (pollen and macrofossil) and 210Pb/137Cs data is employed. As all pollen samples incorporate some non-terrestrial organic matter, we assume an exponential outlier distribution treating each pollen concentrate datum as an old outlier and terminus post quem. This approach yields strong data-model agreement, and differences between the prior and posterior age distributions are furthermore consistent with theoretical offsets anticipated for the known reservoir ages and sample-specific terrestrial content. This application of the pollen concentrate dating approach reinforces the importance of microscopic inspection of the residues during the separation and sieving stages. Sample specific differences mean that the pollen concentrate preparation cannot be reduced to a simplistic “black box” protocol, and dating and subsequent age-model development must be supported by detailed analysis of the microfossil content of the sediments.  相似文献   

17.
We used the Sacramento-San Joaquin River Delta CA (Delta, hereafter) as a model system for understanding how human activities influence the delivery of sediment and total organic carbon (TOC) over the past 50–60 years. Sediment cores were collected from sites within the Delta representing the Sacramento River (SAC), the San Joaquin River (SJR), and Franks Tract (FT), a flooded agricultural tract. A variety of anthropogenic tracers including 137Cs, total DDE (∑DDE) and brominated diphenyl ether (BDE) congeners were used to quantify sediment accumulation rates. This information was combined with total organic carbon (TOC) profiles to quantify rates of TOC accumulation. Across the three sites, sediment and TOC accumulation rates were four to eight-fold higher prior to 1972. Changes in sediment and TOC accumulation were coincident with completion of several large reservoirs and increased agriculture and urbanization in the Delta watershed. Radiocarbon content of TOC indicated that much of the carbon delivered to the Delta is “pre-aged” reflecting processing in the Delta watershed or during transport to the sites rather than an input of predominantly contemporary carbon (e.g., 900–1400 years BP in surface sediments and 2200 yrs BP and 3610 yrs BP at the base of the SJR and FT cores, respectively). Together, these data suggest that human activities have altered the amount and age of TOC accumulating in the Delta since the 1940s.  相似文献   

18.
Lake Karakul in the eastern Pamirs is a large and closed-basin lake in a partly glaciated catchment. Two parallel sediment cores were collected from 12 m water depth. The cores were correlated using XRF analysis and dated using radiocarbon and OSL techniques. The age results of the two dating methods are generally in agreement. The correlated composite core of 12.26 m length represents continuous accumulation of sediments in the lake basin since 31 ka. The lake reservoir effect (LRE) remained relatively constant over this period. High sediment accumulation rates (SedARs) were recorded before 23 ka and after 6.5 ka. The relatively close position of the coring location near the eastern shore of the lake implies that high SedARs resulted from low lake levels. Thus, high SedARs and lower lake levels before 23 ka probably reflect cold and dry climate conditions that inhibited the arrival of moist air at high elevation in the eastern Pamirs. Low lake levels after 6.5 ka were probably caused by declining temperatures after the warmer early Holocene, which had caused a reduction in water resources stored as snow, ice and frozen ground in the catchment. Low SedARs during 23–6.5 ka suggest increased lake levels in Lake Karakul. A short-lived increase of SedARs at 15 ka probably corresponds to the rapid melting of glaciers in the Karakul catchment during the Greenland Interstadial 1e, shortly after glaciers in the catchment had reached their maximum extents. The sediment cores from Lake Karakul represent an important climate archive with robust chronology for the last glacial–interglacial cycle from Central Asia.  相似文献   

19.
A large number of sediment cores collected during 2005-2010 from the Taiwan Strait were analyzed for radionuclides (210Pb, 137Cs and 7Be) to elucidate sedimentation dynamics in this all-important gateway linking two largest marginal seas in the western Pacific (namely, the South China Sea and the East China Sea). Apparent sediment accumulation rates derived from 210Pb and 137Cs profiles vary from <0.1 to >2 cm/yr, averaging ∼0.4 cm/yr and showing a spatial pattern closely related to hydrodynamics and sediment source-to-sink pathways. Spatial-temporal variation of 7Be activity in surface sediments off Taiwan’s west coast indicates episodic deposition of flood layers and their mobility from river estuaries toward the north. In conjunction with particle size distribution in surface sediments and the structure of sediment strata revealed by sub-bottom echo images; the radionuclide data can be used to outline three different sediment source-to-sink dispersal systems. Based on sediment loads of surrounding rivers and the distribution of sediment accumulation rates, lateral transport is required to account for the budget and size distribution of sediments in the strait.  相似文献   

20.
The ~0.2 km3 Eibsee rock avalanche impacted Paleolake Eibsee and completely displaced its waters. This study analyses the lake impact and the consequences, and the catchment response to the landslide. A quasi-3D seismic reflection survey, four sediment cores from modern Lake Eibsee, reaching far down into the rock avalanche mass, nine radiocarbon ages, and geomorphic analysis allow us to distinguish the main rock avalanche event from a secondary debris avalanche and debris flow. The highly fluidized debris avalanche formed a megaturbidite and multiple swashes that are recorded in the lake sediments. The new calibrated age for the Eibsee rock avalanche of ~4080–3970 cal yr BP indicates a coincidence with rockslides in the Fernpass cluster and subaquatic landslides in Lake Piburg and Lake Plansee, and raises the possibility that a large regional earthquake triggered these events. We document a complex history of erosion and sedimentation in Lake Eibsee, and demonstrate how the catchment response and rebirth of the lake are revealed through the complementary application of geophysics, sedimentology, radiocarbon dating, and geomorphology. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号