首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coastal plain of Hangzhou Bay, to the south of the present Yangtze Estuary, is closely linked to the evolution of the Yangtze River delta. However, absolute age of Pre-Holocene sediments is limited, which hinders the understanding of this area's environmental evolution. In this study, using optically stimulated luminescence (OSL), single aliquots and single grains of quartz and K-feldspar were used to date the late Quaternary sediments in coastal plain on the southern Hangzhou Bay. The vertical difference in particle size composition render either silt- or sand-sized quartz for dating. Cross-checking of multiple OSL dating methods indicated that the upper ∼65 m recorded the Holocene part of the succession; sediment from a depth of 136.6 m was dated to ∼180 ka. It was found that the single-grain method was more reliable in comparison to single-aliquot age, the former minimized the effect of signal components. Single-grain quartz and K-feldspar luminescence yielded consistent ages at sample depth of 136.6 m (∼160–180 ka), while the latter gave robust age at depth of 115.5 m (∼150 ka). This chronology is in general in accordance with neighbouring cores and can constrain paleomagnetic dating results in those cores. Taking together, the study site has thickest Holocene deposits in comparison to the highland centered around Taihu Lake on the southern Yangtze delta. Moreover, the luminescence characteristics of quartz from different sample depths, behaved differently with respect to luminescence sensitivity, signal components and saturation level, perhaps reflecting varied provenance and weathering characteristics caused by climate change.  相似文献   

2.
Reliable chronology is critical for reconstructing estuarine delta process. In this study, detailed chronological framework has been performed on a core HPQK01 (52 m in depth) from the central Pearl River delta (PRD) of China. Both quartz OSL and feldspar post-IR IRSL (pIRIR) methods for late Pleistocene sediments, as well as radiocarbon dating for Holocene sediments, were applied to date the core. Results show that quartz OSL ages range from 125 ± 18 ka to 58 ± 6 ka, and that all of them were minimum ages due to the OSL signal saturation. Feldspar pIR200IR290 protocol shows some overestimation in dose recovery test, with the recovered to the given ratio of 1.2, while a ratio of around 1 was obtained for feldspar pIR50IR250 signals. Robust ages have been obtained from feldspar fading corrected pIR50IR250 dating with ages ranging from 150 ± 17 ka to 98 ± 12 ka. AMS 14C results suggest that subtidal-intertidal zone was deposited during the middle Holocene from 8.21 ± 0.19 cal ka BP to 4.99 ± 0.25 cal ka BP. The sedimentology of core HPQK01 record two marine transgressive-regressive cycles. Based on the dating results, the lower fluvial sediment unit (T2) could be correlated to marine isotope stage (MIS) 6, and the lower marine unit (M2) was deposited during MIS 5. A sedimentary hiatus occurred with age range of from MIS 4 to MIS 2. Since middle Holocene, another marine stratum (M1) has been accumulated. Overall, our findings suggest that feldspar pIRIR dating method has the potential to establish the Quaternary chronostratigraphic framework of the PRD for samples with ages within 150 ka.  相似文献   

3.
Sediments of river deltas provide valuable records of past coastal environments. Optically-stimulated luminescence (OSL) dating has become an alternative to radiocarbon dating for constraining the sediment chronology in large deltas that allow for sufficient sunlight bleaching of sediments during the fluvial transport. However, its applicability to smaller deltas with mountainous riverine systems has not been confirmed yet. To check this, we examine multiple signals from two Holocene sediment cores in the wave-dominated Thu Bon River delta in central Vietnam. Two cores were collected, respectively, 3.9 km and 1.2 km inland from the present shoreline and both show a >-25-m thick succession of coarsening-upward mud to sand deposits. Coarse grains (180–250 μm in diameter) of quartz and K-feldspar, and fine grains (4–11 μm in diameter) of quartz and polymineral were extracted from the upper and lower parts of the cores for multi-grain measurements of quartz OSL, and of feldspar infrared-stimulated luminescence (IRSL) at 50 °C (IR50) and post-IR IRSL at 175 °C (pIRIR175) to determine burial ages. In addition, facies analysis and radiocarbon dating were conducted. The landward core consists of transgressive to early regressive estuarine and prodelta facies, which is overlain by a sandy beach-shoreface facies. The seaward core consists of a relatively simple shallowing-upward succession from muddy prodelta facies to sandy beach-shoreface facies. All luminescence ages except for pIRIR175 of fine grains are mostly consistent with the radiocarbon ages. Instead, pIRIR175 ages of fine grains are significantly overestimated with variable offsets. OSL and IR50 of fine grains provide reasonable age estimates, as these grains were likely well bleached during the transport even along a short and steep mountainous river. Consistent age estimates of all signals from sand indicate that sand was well-bleached in the beach and shoreface owing to the frequent sediment reworking by waves and currents. These results support the hypothesis that luminescence dating is applicable to Holocene wave-dominated deltas and reiterate that comparing different luminescence signals is an effective way to check reliability of the age estimates in environments where the sunlight bleaching is not ensured.  相似文献   

4.
The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated (LM)-OSL analysis revealed the dominance of a slow component. When compared with independent age control provided by two marker tephras, the quartz OSL ages grossly underestimate the depositional age. In contrast, potassium (K)-rich feldspar is a suitable dosimeter when measured using post-IR infrared stimulated luminescence (IRSL) at 225 °C (pIRIR225). Scanning electron microscope (SEM) analyses on the feldspar extracts revealed that the grains are amorphous with small crystalline inclusions; using standard internal dose rate parameters, this would result in a too large dose rate. Dose rates were calculated using the observed grain size of 40 ± 20 μm with an assumed K concentration of 12.5 ± 0.5%. The fading corrected pIRIR225 ages agree well with independent age control, and the sediments of the Katanishi Formation were deposited between 82 ± 6 and 170 ± 16 ka. This study demonstrates that pIRIR dating of feldspar is a powerful chronological tool for the dating of sediments of volcanic origin.  相似文献   

5.
Northeastern China is located in the East Asian monsoon region; it is sensitive to both high and low latitude global climate systems. Loess deposits in the region have considerable potential as sensitive archives of past climate changes. However, research into loess deposition and climate change in this region is restricted by the lack of independent age control. In this study, coarse-grained quartz SAR OSL and K-feldspar post-IR infrared (IR) stimulated luminescence (post-IR IRSL; pIRIR290) methods have been used to date the Sanbahuo loess site in northeastern China. The quartz OSL characteristics are satisfactory. The measured pIRIR290 De's do not vary significantly with IR stimulation temperatures between 50 °C and 260 °C; a first IR stimulation temperature of 200 °C was adopted. Dose recovery tests were performed by adding different laboratory doses to both laboratory bleached (300 h SOL2) samples and natural samples; the results are satisfactory up to ∼800 Gy. Resulting quartz OSL and feldspar pIRIR290 ages are in good agreement at least back to ∼44 ka; beyond this feldspar pIRIR290 ages are older. The feldspar ages are consistent with the expected age of the S1 palaeosol (MIS 5). There appears to have been a period of fast loess deposition at ∼62 ka, perhaps indicative of winter monsoon intensification with a very cold and dry climate that lead to a serious desertification of dunefields in northeastern China.  相似文献   

6.
Optically stimulated luminescence (OSL) dating is becoming a useful technique to yield absolute age of organic-poor sandy deposits. The buried tidal sand body (BTSB) in the coastal zone of northern Jiangsu Province, China, has been suggested to have the same origin as the offshore radial sand ridge in the Yellow Sea. However, chronological constrain of the BSTB is still quite limited. In this study, OSL measurements were conducted using silt-sized multi-grain and coarse-grained single-grain quartz to constrain the depositional history of a 25.6 m core from the BTSB. A low luminescence sensitivity of quartz was observed, and only ∼1.04% of the grains passed the standard rejection criterion for single-grain measurement. Analysis of paired OSL ages from two grain-size fractions using different protocols showed that silt-sized quartz ages were underestimated of 0.14–1.35 ka in comparison to coarse-grained quartz in the depth interval of 5.8–22.4 m. We interpret such an age discrepancy as the effects of lateral infiltration of fine-grained sediment into the sand body due to dynamic feature of channel-ridge system on the shelf. As far as we know, it is the first time that such infiltration is demonstrated through OSL dating. Our OSL data indicated that there is a significant hiatus between the Late Pleistocene stiff clay layer (50–18 ka) and the Holocene sequence. Holocene deposits only occurred in the last 2 ka, with rapid accumulation of ∼17 m-thick sediments at ∼2–1 ka, a slower accumulation between ∼1 and 0.1 ka and rapid land emergence through an accretion of ∼4 m-thick sediment over the past ∼0.1 ka. This study highlights the complexity of OSL dating in highly dynamic sedimentary environments. Therefore, examining different grain size fractions and comparing different measurement protocols are highly deserved in carrying out OSL dating in such environments.  相似文献   

7.
Luminescence dating has long been used for chronological constraints on marine sediments due to the ubiquitous dating materials (quartz and feldspar grains) and its applicability over a relatively long time range. However, one of the main difficulties in luminescence dating on marine sediments is partial bleaching, which causes age overestimations. Especially, partial bleaching is typically difficult to be detected in the fine grain fraction (FG) of marine sediments. The recently developed feldspar post-IR IRSL (pIRIR) protocol can detect non-fading signals and thus avoid feldspar signal instability. In the current study, fine grains were extracted from a gravity core in the northern Sea of Japan, and the aim is to test the feasibility of using different luminescence signals with various bleaching rates to explore the bleaching conditions of fine grain fraction in marine sediments. The results suggest that the quartz OSL signal and polymineral pIRIR signals at stimulation temperatures of 150 °C and 225 °C (pIRIR150 and pIRIR225) of FG were well bleached prior to deposition. The OSL ages were used to establish a chronology for this sedimentary core and the resulting age-depth relationship is self-consistent and comparable with radiocarbon dates. We conclude that different luminescence signals with various bleaching rates can be used to test the bleaching conditions of fine grain fraction in marine sediments; and the luminescence dating can be applied to marine sediments with great potential.  相似文献   

8.
Lakes over the inner Tibetan Plateau (TP) are very sensitive to the regional environmental transformations and climate changes. Well-preserved lake sediments around these lakes provide critical geomorphological and sedimentary evidence that can be used to infer the past hydroclimate changes. In this study, a lacustrine section from a sandy shoreline (∼74 m above the modern lake) situated to the northwest of modern Dawa Co in the inner TP was investigated using both luminescence and radiocarbon dating methods. Our results demonstrated: (1) the quartz optically simulated luminescence (OSL) dating yielded much younger ages (∼4 ka) than that of the post-infrared IRSL (pIRIR) dating of the K-feldspar fraction; (2) fading test showed g-values ranging between 1.34 and 4.46%/decade for quartz OSL signals, which is considered to be responsible for the underestimation of the corresponding ages; (3) the AMS 14C age of the charcoal sample from the section is in line with the K-feldspar pIRIR225 ages, confirming the reliability of the pIRIR225 dates and the underestimation of the quartz OSL ages. The anomalous fading of quartz OSL signals and the consequent age underestimation have been reported in several other lakes on the TP, we presented here for the first time firm evidence of the phenomenon with the help of a robust independent control of AMS 14C age of the charcoal. Based on the pIRIR225 and AMS 14C ages, we conclude that Dawa Co underwent a prominent highstand during the early Holocene (∼9–7 ka), which was probably controlled by the large amounts of glacial meltwater input and the increased monsoonal precipitation.  相似文献   

9.
We present a detailed luminescence chronology of the loess-palaeosol sequences in the Lower Volga region of Russia at the Leninsk site – an important palaeogeographic archive describing the climate and environmental conditions of regressive stages of the Caspian Sea. The chronology of these sediments has received very little attention compared to the under- and overlying marine deposits. The degree of bleaching was addressed by making use of the differential resetting rates of quartz and feldspar. Our results show that the quartz OSL and feldspar pIRIR50,290 signals were sufficiently bleached before deposition and uncertainties in bleaching have a negligible impact on the reliability of the luminescence ages. The combined quartz OSL and K-feldspar pIRIR50,290 chronology constrains the main stages of the Northern Caspian Lowland evolution during the Late Quaternary. During early MIS 5 (130–120 ka), the northern part of the Lower Volga was covered by a shallow brackish water estuary of the warm Late Khazarian Caspian Sea transgression. After ∼122 ka, the Volga incised the Northern Caspian Lowland surface following sea-level decrease and the start of subaerial conditions at Leninsk. Loess accumulation rate increased towards the end of MIS 5 and two palaeosols of presumably MIS 5с and MIS 5a age formed, exhibiting features evidencing a dry, cold climate, influenced by long seasonal flooding by the Volga River. Cryogenesis affecting the MIS 5a soil is a regional phenomenon and is dated to between ∼70 and 90 ka. The overlying thick Atelian loess unit formed during the cold periods of MIS 4 and MIS 3. Clear erosional features at the top of the Atelian loess are constrained by luminescence to ∼35 to ∼24 ka, allowing reconstruction of erosion of 150–200 cm of loess.  相似文献   

10.
The numerical dating of megaflood sediments is a worldwide challenge, a fact that has impeded a full understanding of Late Quaternary dam-outburst flood processes that occurred along the river courses of the Tibetan Plateau. Optically stimulated luminescence (OSL) dating has been widely used on such sediments. Due to their short transportation distances prior to deposition, the OSL signals of megaflood sediments are often partially bleached, resulting in age overestimations. Here, we report on a comparison of OSL ages obtained using both quartz (4–11 μm FG; 90–125, 180–250 μm CG) and K-feldspar (180–250 μm CG) extracted from sediments taken from the Binghong-Bingnong Neolithic-Bronze Age site on the second Jinshan River terrace (T2), in Yunnan Province, southwestern China. Contrary to previous experience suggesting that CG fractions are usually better bleached than FG fractions prior to deposition, our results showed that the OSL ages for the FG quartz fraction were generally younger than those for the CG fraction. This would suggest that the two fractions may have come from different sources, and may have been subject to different geomorphological processes prior to deposition. FG quartz fractions may be suitable to define the maximum age of sediments located in alpine gorge regions. CG quartz fractions can be used by applying the minimum age model (MAM) to select relatively well-bleached grains yielded ages close to the ‘true’ burial ages of the sediments. The results showed that the post-IR IRSL225 ages of single grain K-feldspar were overestimated by > 3 ka, suggesting K-feldspar may not be suitable dating material for megaflood sediments <30 ka. The OSL dates suggest that the T2 terrace was formed ∼8.4 ka, that aeolian sediments were deposited during ∼2.6–1.5 ka, and that the megaflood event occurred after ∼1.5 ka.  相似文献   

11.
In this study we test, for the first time, the potential of an elevated temperature post-IR IR (pIRIR290) SAR protocol for the dating of young heated artefacts. Seven heated stones and seven potshards were collected from three different archaeological sites in Denmark: one site from the early Pre-Roman Iron Age 200 BC to AD 100, and two from the Viking period between AD 800 and 1200.We first derive quartz OSL ages for these samples, to support the archaeological age control. The luminescence characteristics of the pIRIR290 signal are then investigated; in particular the dose recovery ratios are shown to be close to unity. The performance of the feldspar pIRIR290 protocol is then examined by comparing the pIRIR290 ages with those based on the quartz OSL signal; the average ratio of pIRIR290 to OSL ages is 1.14 ± 0.05 (n = 14) and there is some suggestion that the possible overestimation of the feldspar ages compared to quartz is only of significance for the heated stone samples. Nevertheless, there is no indication of incomplete heating of the stones; the ratios of De derived from the IR50 and pIRIR290 signals are independent of sample type, and consistent with complete resetting by heating. Comparison with the archaeological age control is not able to identify whether quartz or feldspar provides the most reliable dating signal.  相似文献   

12.
We present a comparative study of quartz OSL, polymineral IRSL at low temperature (50 °C, IR50) and post-IR elevated temperature (290 °C) IRSL (pIRIR290) feldspar dating on nine samples from the Tokaj loess section in NE Hungary (SE Europe). Preheat plateau tests show a drop in quartz OSL De between 160 and 240 °C but above 240 °C a clear De plateau is present. Quartz OSL SAR is shown to be generally appropriate to these samples (recycling, recuperation) but a satisfactory dose recovery result was only obtained when a dose was added to a sample without any prior optical or thermal pre-treatment; this gave a dose recovery ratio of 1.04 ± 0.05 after subtracting the natural dose from the measured dose. The pIRIR290 SAR protocol also results in acceptable dose recovery results for the pIRIR290 signal (1.08 ± 0.01) when a large dose is added to the natural dose. Bleaching experiments suggest a detectable non-bleachable residual pIRIR290 dose of 10 ± 4 Gy. Agreement with quartz OSL ages is best achieved by correcting the IR50 ages for fading; however this is not necessary when using the pIRIR290 signal. With respect to Hungarian Late Quaternary geology our results indicate that the major part of the Tokaj loess has been deposited during MIS 3 (60–24 ka), with periods of soil formation occurring during the onset of MIS 3 (≥58 ka) and between about 35 and 25 ka. Our results also indicate episodic deposition of loess and varying, non-linear sedimentation rates during MIS 3. Proxy analyses in the literature are based on the traditional concept of continuous deposition; in the light of our new data the use of such simple assumptions must be reconsidered.  相似文献   

13.
In this study thermally transferred (TT) OSL and post-IR elevated temperature IRSL (290 °C) (pIRIR290) dating are applied to deposits covering coastal terraces on the Cap Bon peninsula, Tunisia. Both methods perform well under standard performance tests; dose recovery tests using a modern analogue show that doses relevant to our study can be recovered accurately. Residual signals in the modern analogue for both signals are very small (∼2 Gy). For the younger (<250 ka) deposits reasonable good agreement of the ages is observed between both methods, and in addition with standard quartz OSL dating. Systematic discrepancy in ages is found for the older sediments. The TT-OSL underestimate (compared to the pIRIR290 ages) is most likely due to the short lifetime of the TT-OSL trap; we estimate a lifetime of ∼0.7 Ma at 19 °C (mean ambient air temperature of the study area). This is the first time this lifetime has been derived from geological data and it is within the range of previously published laboratory estimates. This result suggests that TT-OSL is not likely to provide a significant extension of the age range beyond that available from other methods. Our preferred pIRIR290 ages suggest that the geological setting on Cap Bon is not as simple as previously suggested.  相似文献   

14.
Some of the largest catastrophic outbursts of periglacial lakes known in the geological history of the Earth have been identified in the Altai Mountains. Traces of these events are recorded in the form of large terraces, predominantly composed of gravel material with numerous horizons of large boulders and blocks. Determining the age of these large-scale events is difficult due to the lack of suitable material (e.g. organics, well-bleached sand) and the specific genesis of these sediments. The results of cosmogenic radionuclide dating suggest a post-LGM age both for the source of the flood water and for different elements of the catafluvial terraces in the Chuya and Katun river valleys. Nevertheless, the age(s) of catastrophic breakthrough remains controversial. On the basis of a few IRSL ages, and geological and other evidence, some view the event as occurring around MIS 5. In this study, we investigate loess-like loams overlying the catafluvial sediments on the surface of the highest level terrace, ∼200 m above present river level. A total of 24 samples for luminescence dating were obtained, for which the OSL, IR50, and pIRIR50,290 signals were measured to control the degree of signal zeroing and the dating reliability. The age of the loess in all three pits was from 0.5 ka at the top to 23 ka at the base of the loess strata. From a sand layer in the top of the catafluvial deposits, two ages of ∼85–90 ka were obtained from feldspar pIRIR50,290. These results provide a minimum pre-LGM age for the geomorphological surface of a major catafluvial terrace in the Altai Mountains.  相似文献   

15.
Multiple-aliquot regenerative-dose violet stimulated luminescence (MAR-VSL) dating studies of the Chinese loess-palaeosol sequence in Luochuan using sand- and silt-sized quartz have previously produced inconsistent results; the VSL ages were in agreement with their independent ages up to ∼900 ka for sand-sized quartz, whereas the silt-sized VSL ages underestimated the independent chronology beyond ∼100 ka. Here we therefore evaluate the VSL dose response pattern of sand- (63–100 μm) and silt-sized (4–11 μm) quartz grains from the loess-palaeosol sequence in southern Germany in high resolution but with a limited age range up to ∼160 ka. All the samples studied benefit from good age control provided by reliable quartz optically stimulated luminescence (OSL) ages and fading corrected feldspar post-infrared infrared stimulated luminescence at 225 °C (pIRIR225) ages, which can be used for assessing the validity of the estimated VSL ages. The comparison of the MAR standardised dose response curve (DRC) using regeneration doses up to ∼1000 Gy for both grain size fractions demonstrates that they are almost similar in shape with comparable characteristic saturation doses. The comparison of the natural and laboratory generated DRCs of each grain size reveals that they broadly overlap in the low dose range for both fractions, while in the high dose range the deviation between natural and laboratory DRCs is higher for the silt-sized quartz fraction. It is also shown that the magnitude of the characteristic saturation dose is dependent upon the size of the maximum given dose, especially for the silt-sized quartz. The constructed laboratory standardised DRCs to very high doses (up to ∼6000 Gy) showed continuous signal growth at high doses, particularly in the case of silt-sized quartz grains, thereby confirming our previous observation. The sand-sized quartz has a much less pronounced linear growth component and can therefore be considered more suitable for dating samples with equivalent doses falling on the high dose region of the DRC.  相似文献   

16.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

17.
OSL and IRSL dating are applied to samples from a 152 m-long drill core to constrain the timing of three glaciolacustrine depositional periods within the infill of an overdeepened bedrock trough in the Lower Glatt valley, N Switzerland. The characterisation of the dose-response suggests that the polymineral IRSL50 and pIRIR180/225 signals are close to saturation, while quartz OSL ages are within the range of reliable dating. The demarcation of the upper quartz OSL dating limit, however, remains challenging. Dose-recovery tests performed with long storage periods were used to investigate the reliability of the high region of the dose-response curve. They suggest an upper limit for reliable dating of ∼400 Gy for these samples, which was considerably lower than the commonly used 2D0 criterion. Lifetimes were calculated for the quartz OSL and the thermal stability of the signal is not considered as problematic for the determined ages. Allowing for a contribution from inherited dose due to partial bleaching, places the infill of the overdeepened valley within the penultimate glacial cycle (MIS6).  相似文献   

18.
A comparative study using quartz optically stimulated luminescence (OSL) and feldspar post-infrared infrared stimulated luminescence (post-IR IRSL) was undertaken on Quaternary fluvial sediments from an unnamed tributary of the Moopetsi River in South Africa. The aim is to assess whether the post-IR IRSL signal can be used to date incompletely bleached sediments. Several post-IR IRSL signals using varying stimulation and preheat temperatures were investigated; of these the post-IR IRSL225 signal was deemed most appropriate for dating because it bleached most rapidly. The feldspar post-IR IRSL225 equivalent dose (De) values from this site are consistently larger than those from quartz OSL, probably due to differences in the bleaching characteristics of the two signals. Additionally, the post-IR IRSL225 De values within a sample showed less variation in precision than the quartz De data, possibly due to greater averaging between grains in the feldspar small aliquots. The agreement between ages based on the OSL and post-IR IRSL225 signals was better for younger samples (<20 ka) than for older ones (>50 ka); the cause of this variation is unclear.  相似文献   

19.
Quartz optically stimulated luminescence (OSL) dating is widely used to determine the time of deposition and burial of Late Quaternary sediments. Application of the method is usually limited to the past 150,000 years due to early saturation of the OSL signal. Here we explore the potential to date Quaternary sediments using the violet (402 nm) stimulated luminescence (VSL) signal of quartz. We develop and test a new post-blue VSL single aliquot regenerative dose dating protocol, and demonstrate that the VSL signal originates from a deep trap at about 1.9 eV with a thermal lifetime of 1011 years at 10 °C, and that this trap is bleachable by sunlight. The VSL signal grows with dose to ∼6400 Gy, a factor ∼20 higher than the conventional quartz OSL signal, and with the proposed protocol we recover a known dose of 1000 Gy in three out of four samples. The potential of the VSL protocol for dating Quaternary sediments is highlighted by its successful application to a suite of geological samples ranging in age between 13 and 330 ka. Based on our investigations, we propose that the VSL protocol has the potential to extend the quartz dating range to cover the full Quaternary.  相似文献   

20.
Optically stimulated luminescence (OSL) dating was performed on Late Quaternary deltaic sequences from a 55-m-long core sampled from the Nakdong River estuary, Korea. OSL ages obtained from chemically separated fine (4–11 μm) and coarse (90–212 μm) quartz grains ranged from 29.4 ± 2.6 to 0.4 ± 0.04 ka, revealing clear consistency between the grain-size fractions. The De values from the standardized growth curve (SGC) are consistent with those from the single-aliquot regenerative-dose (SAR) procedure, which suggests that the SGC is valid for the Nakdong deltaic sediments. The 14C ages of shells and wood fragments ranged from 11 to 2.9 ka, demonstrating reasonable agreement with the OSL ages, within the error range. However, the limited number and random sampling interval of the 14C age data (10 ages) result in a simple linear and exponential trend in the depth–age curve. In contrast, OSL ages obtained by high-resolution sampling show down-section variations in the depth–age curve, indicating the occurrence of rapid changes in sedimentation rate. It is suggested that the high-sampling-resolution OSL ages provide a more realistic and detailed depth–age curve and sedimentation rate. The Nakdong deltaic sediments were divided into five units based on sedimentation rate. The lowest (unit 5) shows a break in sedimentation between the last glacial maximum (LGM) and the Holocene. The sedimentation rate increased in units 4 and 3, presumably corresponding to the early to middle Holocene sea level rise and high stand. Unit 2 shows a gradually decreasing sedimentation rate following the regression of the shoreline, until about 2 ka. The progradation of the Nakdong River delta resulted in the rapid accumulation of unit 1 during the last 2000 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号