首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Flood irrigation is globally one of the most used irrigation methods. Typically, not all water that is applied during flood irrigation is consumed by plants or lost to evaporation. Return flow, the portion of applied water from flood irrigation that returns back to streams either via surface or subsurface flow, can constitute a large part of the water balance. Few studies have addressed the connection between vertical and lateral subsurface flows and its potential role in determining return flow pathways due to the difficulty in observing and quantifying these processes at plot or field scale. We employed a novel approach, combining induced polarization, time‐lapse electrical resistivity tomography, and time‐lapse borehole nuclear magnetic resonance, to identify flow paths and quantify changes in soil hydrological conditions under nonuniform application of flood irrigation water. We developed and tested a new method to track the wetting front in the subsurface using the full range of inverted resistivity values. Antecedent soil moisture conditions did not play an important role in preferential flow path activation. More importantly, boundaries between lithological zones in the soil profile were observed to control preferential flow pathways with subsurface run‐off occurring at these boundaries when saturation occurred. Using the new method to analyse time‐lapse resistivity measurements, we were able to track the wetting front and identify subsurface flow paths. Both uniform infiltration and preferential lateral flows were observed. Combining three geophysical methods, we documented the influence of lithology on subsurface flow processes. This study highlights the importance of characterizing the subsurface when the objective is to identify and quantify subsurface return flow pathways under flood irrigation.  相似文献   

2.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The objective of this research is to improve the comprehension of the hydrological behaviour of natural catchments. The main originality of this work is to associate different types of measurement in order to obtain a better vision of hydrological processes responsible for streamflow generation. First, the hydrological behaviour is studied at the catchment scale by the application of environmental tracing. A three‐component mixing model based on the silica and calcium concentrations of water allows one to distinguish the contributions of direct precipitation, soil water and groundwater during flood generation. Despite the different hydrological responses observed between the four subcatchments studied, a common behaviour is apparent. Soil contribution increases with a rise in the basin humidity. The subsurface water dominates the generation of major floods, which occur in wet conditions. In order to discover the processes responsible for the important soil water contributions, a large‐scale time‐domain reflectometry experiment (64 probes) was conducted. On the whole, this experiment indicates that the water flow in soil is spatially quite heterogeneous and depends on local properties. Macropore flows were clearly identified during a rainfall simulator experiment. Preferential flows may be responsible for the important contribution of soil water and the heterogeneity of the soil moisture. In order to test this hypothesis, a dye‐tracing experiment was done. This new investigation confirms that an important part of soil water reaches the stream by preferential flows. So as to synthesize all these observations, a conceptual model is proposed. This model respects both the hydrochemical responses highlighted by the environmental tracing experiment and the observations done at the local scale. This conceptual model suggests that the important contribution of soil water is due to the extent of the hydrographic network and the role of preferential flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the feasibility of using magnetic resonance imaging (MRI) to study water infiltration into a heterogeneous soil is examined, together with its difficulties and limitations. MRI studies of ponded water infiltration into an undisturbed soil core show that the combination of one- and two-dimensional imaging techniques provides a visual and non-destructive means of monitoring the temporal changes of soil water content and the moisture profile, and the movement of the wetting front. Two-dimensional images show air entrapment in repetitive ponded infiltration experiments. During the early stages of infiltration, one-dimensional images of soil moisture profiles clearly indicate preferential flow phenomena. The observed advance of wetting fronts can be described by a linear relationship between the square root of infiltration time (√t) and the distance of the wetting front from the soil surface. Similarly, the cumulative infiltration is also directly proportional to √t. Furthermore, from the MRI infiltration moisture profiles, it is possible to estimate the parameters that feature in infiltration equations. © 1997 by John Wiley & Sons, Ltd.  相似文献   

5.
Many concepts have been proposed to explain hydrologic connectivity of hillslopes with streams. Hydrologic connectivity is most often defined by qualitative assessment of spatial patterns in perched water tables or soil moisture on hillslopes without a direct linkage to water flow from hillslopes to streams. This form of hydrologic connectivity may not explain the hydrologic response of catchments that have network(s) of preferential flow paths, for example, soil pipes, which can provide intrinsic connectivity between hillslopes and streams. Duplex soils are known for developing perched water tables on hillslopes and fostering lateral flows, but the connectivity of localized perched water tables on hillslopes with soil pipes has not been fully established. The objectives of this study were to characterize pipeflow dynamics during storm events, the relationships between perched water tables on hillslopes and pipeflows, and their threshold behaviour. Two well‐characterized catchments in loess soil with a fragipan were selected for study because they contain multiple, laterally extensive (over 100 m) soil pipe networks. Hillslopes were instrumented with shallow wells adjacent to the soil pipes, and the wells and pipe collapse features were equipped with pressure transducers. Perched water tables developed on hillslopes during a wetting up period (October–December) and became well connected spatially across hillslope positions throughout the high flow period (January–March). The water table was not spatially connected on hillslopes during the drying out (April–June) and low flow (July–September) periods. Even when perched water tables were not well‐connected, water flowing through soil pipes provided hydrologic connectivity between upper hillslopes and catchment outlets. Correlations between soil pipeflow and perched water tables depended on the size and location of soil pipes. The threshold relationship between available soil‐moisture index plus storm precipitation and pipeflow was dependent on the season and strongest during dry periods and not high‐flow seasons. This study demonstrated that soil pipes serve as a catchment backbone of preferential flow paths that provide intrinsic connectivity between upper hillslopes and streams.  相似文献   

6.
Soil moisture is essential for vegetation restoration in arid and semi-arid regions. Ascertaining the vertical distribution and transportation of soil moisture under different vegetation types has a profound effect on the ecological construction. In this study, the soil moisture at a depth of 500 cm for four typical vegetation types, including Robinia pseudoacacia, Caragana korshinskii, Stipa bungeana, and corn, were investigated and compared in the Zhifanggou watershed of the Loess plateau. Additionally, hydrogen and oxygen stable isotopes were detected to identify the transport mechanism of soil moisture. The results showed vertical distribution and transportation of soil moisture were different under different vegetation types. Depth-averaged soil moisture under S. bungeana and corn generally increased along the profile, while C. korshinskii and R. pseudoacacia showed weakly increasing and relatively stable after an obvious decreasing trend (0–40 cm). The soil moisture under R. pseudoacacia was lower than that under other vegetation types, especially in deep layer. However, the effect of R. pseudoacacia on soil moisture in the topsoil (< 30 cm) could be positive. For R. pseudoacacia (160–500 cm), C. korshinskii (0–500 cm), and S. bungeana (0–100 cm), the soil moisture declined with increased in vegetation age. Planting arbor species such as R. pseudoacacia intensified the decline of soil moisture on the Loess Plateau. The capacity of evaporation fractionation of soil moisture followed the sequence: corn > S. bungeana > R. pseudoacacia > C. korshinskii. The δ18O values in soil water fluctuated across the profile. The δ18O values changed sharply in upper layer and generally remained stable in deep layer. However, in middle layer, the vertical distribution characteristics of the δ18O values were different under different vegetation types. We estimated that piston flow was the main mode of precipitation infiltration, and the occurrence of preferential flow was related to vegetation types. These results were helpful to improve the understanding of the response of deep soil moisture to vegetation restoration and inform practices for sustainable water management.  相似文献   

7.
In semiarid ecosystems, the transfer of water, sediments, and nutrients from bare to vegetated areas is known to be crucial to ecosystem functioning. Rainfall simulation experiments were performed on bare‐soil and vegetated surfaces, on both wet and dry soils, in semiarid shrub‐steppe landscapes of SE Spain to investigate the spatial and temporal factors and interactions that control the fine‐scale variation in water infiltration, runoff and soil loss, and hence the water and sediment flows in these areas. Three types of shrub‐steppe landscapes varying in plant community and physiography, and four types of plant patches (oak shrub, subshrub, tussock grass, and short grass mixed with chamaephytes) were studied. Higher infiltration and lower runoff and soil loss were measured on vegetation patches than on bare soils, for both dry and wet conditions. The oak‐shrub patches produced no runoff, while the subshrub patches showed the highest runoff and soil loss. Despite these differences among patch types, the influence of vegetation patch type on the variables analysed was not significant. The response of bare soil surfaces clearly varied between landscape types, yet the differences were only relevant under dry soil conditions. Stone cover, particularly the cover of embedded stones, and crust cover, were the key explanatory variables for the hydrological behaviour of bare soils. The study documents quantitatively how bare soils and vegetation patches function as runoff sources and runoff sinks, respectively, for a wide range of soil moisture conditions, and illustrates that landscape‐type effects on bare‐soil runoff sources may also exert an important control on the site hydrology, while the role of the vegetation patch type is less important. The effects of the control factors are modulated by antecedent soil moisture, with dry soils showing the most contrasting soil water infiltration between landscapes and surface types. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Stormwater infiltration systems are a popular method for urban stormwater control. They are often designed using an assumption of one‐dimensional saturated outflow, although this is not very accurate for many typical designs where two‐dimensional (2D) flows into unsaturated soils occur. Available 2D variably saturated flow models are not commonly used for design because of their complexity and difficulties with the required boundary conditions. A purpose‐built stormwater infiltration system model was thus developed for the simulation of 2D flow from a porous storage. The model combines a soil moisture–based model for unsaturated soils with a ponded storage model and uses a wetting front‐tracking approach for saturated flows. The model represents the main physical processes while minimizing input data requirements. The model was calibrated and validated using data from laboratory 2D stormwater infiltration trench experiments. Calibrations were undertaken using five different combinations of calibration data to examine calibration data requirements. It was found that storage water levels could be satisfactorily predicted using parameters calibrated with either data from laboratory soils tests or observed water level data, whereas the prediction of soil moistures was improved through the addition of observed soil moisture data to the calibration data set. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Mountain headwater catchments in the semi‐arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. This study examined subsurface runoff in two hillslopes, one aspen dominated, the other conifer dominated, adjacent to a first order stream in snow‐driven northern Utah. Snow accumulation, soil moisture, trenchflow and streamflow were examined in hillslopes and their adjacent stream. Snow water equivalents (SWEs) were greater under aspen stands compared to conifer, the difference increasing with higher annual precipitation. Semi‐variograms of shallow spatial soil moisture patterns and transects of continuous soil moisture showed no increase in soil moisture downslope, suggesting the absence of subsurface flow in shallow (~12 cm) soil layers of either vegetation type. However, a clear threshold relationship between soil moisture and streamflow indicated hillslope–stream connectivity, deeper within the soil profile. Subsurface flow was detected at ~50 cm depth, which was sustained for longer in the conifer hillslope. Soil profiles under the two vegetation types varied, with deep aspen soils having greater water storage capacity than shallow rocky conifer soils. Though SWEs were less under the conifers, the soil profile had less water storage capacity and produced more subsurface lateral flow during the spring snowmelt. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Preferred infiltration is mainly perceived as vertically down whereas subsurface storm flow is thought to occur parallel to slopes. The transition from vertical to lateral flow in a layered hillslope soil is the focus of the contribution. Transient flow is assumed to move as a wetting front. Three time‐domain reflectometry (TDR) wave‐guides, each 0·15 m long, were mounted in the shape of a truncated tetrahedron with its peak pointing down. Each wave‐guide focuses the front velocity along its axis. The three front‐velocity vectors are decomposed into their x, y and z components, which are then assembled to the resultant velocity vector. The volume density flux of preferred flow is the product of the front velocity and the mobile water content. The latter is the amplitude of transient soil moisture measured with each wave‐guide. The resultant vector of the volume flux density is computed similarly to the velocity vector. The experimental approach allows for the rapid assessment of transient flows without relying on the variation of water potentials. The experiments indicate that the directions of the resultant vectors of velocity and volume flux density can be estimated if the moisture variations of the three TDR wave‐guides are strongly correlated during the passing of the wetting front. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The incidence of large rain events in Mediterranean ecosystems vary among years. Summer aridity is interpreted as a resetting event, eliminating previous soil‐moisture dynamics. The dynamics of soil moisture and retention are critical to tree survival, particularly in dry regions. This study examines the long‐term soil water content (θV) dynamics in two distinct locations within the forest, under the canopy and forest clearing, within two diverse oak forests: subhumid mixed oak forests (MG) and semiarid monospecific oak woodlands (YE). Plots were established at small‐scale catchments and soil water contents were measured during 2010–2013, at three depths in the two different locations. Cumulative rainfall was used as an independent proxy for θV analysis. A novel bell‐bilogistic mathematical model of wetting, saturation, and drying arms was developed. We aimed to study the θV distribution differences between soil profiles giving the large climatic gradient between the two forested sub basins, the differences in vegetation traits along with soil attributes. We further aimed at determining the role of an individual tree in regulating soil‐moisture dynamics. We hypothesized the occurrence of distinct responses between sites in all soil‐moisture indices with higher θV at the wetter site. We tested the hypothesis that seasonal cumulative rainfall dictates the variations in soil‐moisture regimes throughout contiguous years. Annual rainfall was higher than long‐term average throughout the study. Soil profiles under the canopies at both sites were consistently wetter. Infiltration and depletion constants were higher at MG whereas maximum soil moisture was higher at YE. Homogenous recharge patterns were seen at MG although YE evinced more variation. Oaks had no effect on recharge at MG compared with the forest clearing. Soil properties primarily affected the wetting arm whereas vegetation composition regulated the drying arm. Mixed‐stands characterized by ever‐green and deciduous species may maintain favourable soil‐moisture conditions, in comparison with other mixed stand morphologies. The increasing role of slacking forces in infiltration process may alter the interaction between trees and herbaceous vegetation.  相似文献   

13.
Precipitation is often the sole source of water replenishment in arid and semi‐arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf‐shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time‐domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf‐shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7·5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (~10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (~60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub communities with and without microbiotic soil crust cover, but significantly higher than measured in the bare area. Soil water extraction by roots associated with evapotranspiration restricted the wetting front penetration after 1 to 3 h of rainfall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Influences of vegetation on shallow (< 1 m) soil slip formation through modification of soil water was investigated on hillsides covered by verdant chaparral (dense shrubland), and burned vegetation in the Transverse Ranges of California. Per cent available water and hydraulic potentials were obtained from electrical resistance blocks and tensiometers for one year in soils under burned and unburned vegetation on three slopes. Soil remained moister during a dry period under burned vegetation than under unburned chaparral on two of the three slopes studied. Daily increases in per cent available water and hydraulic potential of soils were greatest for a given storm where soil was driest prior to the storm. Furthermore, water levels in soil tended to be greatest for a given storm where soil water levels had been lowest prior to the storm. These two findings were corroborated by laboratory wetting trials on undisturbed soils of vastly differing mechanical properties in that initially drier soils always absorbed water faster and became wetter than initially moister soils. In the field, soil water levels became similarly high under all vegetation after several storms and varied little throughout the remainder of the wet season. These results contradict the common assumption that depletion of soil water by vegetation would result in slower saturation rates and hence greater resistance of a soil mass to slippage.  相似文献   

15.
Soil moisture is essential for plant growth and terrestrial ecosystems, especially in arid and semi‐arid regions. This study aims to quantify the variation of soil moisture content and its spatial pattern as well as the influencing factors. The experiment is conducted in a small catchment named Yangjuangou in the loess hilly region of China. Soil moisture to a depth of 1 m has been obtained by in situ sampling at 149 sites with different vegetation types before and after the rainy season. Elevation, slope position, slope aspect, slope gradient and vegetation properties are investigated synchronously. With the rainy season coming, soil moisture content increases and then reaches the highest value after the rainy season. Fluctuation range and standard deviation of soil moisture decrease after a 4‐month rainy season. Standard deviation of soil moisture increases with depth before the rainy season; after the rainy season, it decreases within the 0‐ to 40‐cm soil depth but then increases with depths below 40 cm. The stability of the soil moisture pattern at the small catchment scale increases with depth. The geographical position determines the framework of soil moisture pattern. Soil moisture content with different land‐use types is significantly increased after the rainy season, but the variances of land‐use types are significantly different. Landform and land‐use types can explain most of the soil moisture spatial variations. Soil moisture at all sample sites increases after the rainy season, but the spatial patterns of soil moisture are not significantly changed and display temporal stability despite the influence of the rainy season. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Y. Zhao  S. Peth  X. Y. Wang  H. Lin  R. Horn 《水文研究》2010,24(18):2507-2519
Temporal stability of soil moisture spatial patterns has important implications for optimal soil and water management and effective field monitoring. The aim of this study was to investigate the temporal stability of soil moisture spatial patterns over four plots of 105 m × 135 m in grid size with different grazing intensities in a semi‐arid steppe in China. We also examined whether a time‐stable location can be identified from causative factors (i.e. soil, vegetation, and topography). At each plot, surface soil moisture (0–6 cm) was measured about biweekly from 2004 to 2006 using 100 points in each grid. Possible controls of soil moisture, including soil texture, organic carbon, bulk density, vegetation coverage, and topographic indices, were determined at the same grid points. The results showed that the spatial patterns of soil moisture were considerably stable over the 3‐y monitoring period. Soil moisture under wet conditions (averaged volumetric moisture contents > 20%) was more stable than that under dry ( ) or moist ( ) conditions. The best representative point for the whole field identified in each plot was accurate in representing the field mean moisture over time (R2 ≥ 0·97; p < 0·0001). The degree of temporal persistence varied with grazing intensity, which was partly related to grazing‐induced differences in soil and vegetation properties. The correlation analysis showed that soil properties, and to a lesser extent vegetation and topographic properties, were important in controlling the temporal stability of soil moisture spatial patterns in this relatively flat grassland. Response surface regression analysis was used to quantitatively identify representative monitoring locations a priori from available soil‐plant parameters. This allows appropriate selection of monitoring locations and enhances efficiency in managing soil and water resources in semi‐arid environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   

20.
Through the delivery of water in snowmelt, climate should govern the rate and extent of saprolite formation in snow‐dominated mountain watersheds, yet the mechanisms by which water flows deeply into regolith are largely unexplored. In this study we link rainfall, snow depth, and water content data from both soil and shallow saprolite to document vadose zone dynamics in two montane catchments over 2 years. Measurements of snow pack thickness and soil moisture reveal strong contrasts between north‐ and south‐facing slopes in both the timing of meltwater delivery and the duration of significant soil wetting in the shallow vadose zone. Despite similar magnitudes of snowmelt recharge, north‐facing slopes have higher sustained soil moisture compared to south‐facing slopes. To help interpret these observations, we use a 2D numerical model of vadose zone dynamics to calculate the expected space–time moisture patterns on an idealized hillslope under two wetting scenarios: a single sustained recharge pulse versus a set of short pulses. The model predicts that the duration of the recharge event exerts a stronger control on the depth and residence time of water in the upper unsaturated zone than the magnitude of the recharge event. Model calculations also imply that water should move more slowly through the subsurface and downward water flux should be substantially reduced when water is applied in several pulses rather than in one sustained event. The results suggest that thicker soil and more deeply weathered rock on north‐facing slopes may reflect greater water supply to the deep subsurface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号