首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
We investigated the provenance of organic matter in the inner fjord area of northern Patagonia, Chile (~44–47°S), by studying the elemental (organic carbon, total nitrogen), isotopic (δ13C, δ15N), and biomarker (n-alkanoic acids from vascular plant waxes) composition of surface sediments as well as local marine and terrestrial organic matter. Average end-member values of N/C, δ13C, and δ15N from organic matter were 0.127±0.010, ?19.8±0.3‰, and 9.9±0.5‰ for autochthonous (marine) sources and 0.040±0.018, ?29.3±2.1‰, and 0.2±3.0‰ for allochthonous (terrestrial) sources. Using a mixing equation based on these two end-members, we calculated the relative contribution of marine and terrestrial organic carbon from the open ocean to the heads of fjords close to river outlets. The input of marine-derived organic carbon varied widely and accounted for 13–96% (average 61%) of the organic carbon pool of surface sediments. Integrated regional calculations for the inner fjord system of northern Patagonia covered in this study, which encompasses an area of ~4280 km2, suggest that carbon accumulation may account for between 2.3 and 7.8×104 ton C yr?1. This represents a storage capacity of marine-derived carbon between 1.8 and 6.2×104 ton yr?1, which corresponds to an assimilation rate of CO2 by marine photosynthesis between 0.06 and 0.23×106 ton yr?1. This rate suggests that the entire fjord system of Patagonia, which covers an area of ~240,000 km2, may represent a potentially important region for the global burial of marine organic matter and the sequestration of atmospheric CO2.  相似文献   

2.
Surface sediments samples were collected from 9 stations of the Cochin estuary during the monsoon, post-monsoon and pre-monsoon seasons and were analyzed for grain size, total organic carbon (OC), total nitrogen (TN) and stable isotopic ratios of carbon (δ13C) and nitrogen (δ15N) to identify major sources of organic matter in surface sediments. Sediment grain size is found to be the key factor influencing the organic matter accumulation in surface sediments. The δ13C values ranges from ?27.5‰ to ?21.7‰ in surface sediments with a gradual increase from inner part of the estuary to the seaward side that suggest an increasing contribution of marine autogenous organic matter towards the seaward side. The δ15N value varies between 3.1‰ and 6.7‰ and it exhibits complex spatial and seasonal distributions in the study area. It is found that the dynamic cycling of nitrogen through various biogeochemical and organic matter degradation processes modifies the OC/TN ratios and δ15N to a considerable degree. The fraction of terrestrial organic matter in the total organic matter pool ranges from 13% to 74% in the surface sediments as estimated by δ13C based two end member mixing model.  相似文献   

3.
We investigated the relative distribution of allochthonous (i.e., terrigenous) organic matter in the complex, continuous, river–fjord–sound–channel–gulf system of Chile’s North Patagonia (41.5–46.5°S) in order to establish whether this organic matter can reach the open ocean or whether it is largely retained near its fluvial sources. Grain size distribution, total organic carbon and total nitrogen contents, and carbon stable isotope contents (δ13C) were quantified in 53 surface sediment samples collected during the CIMAR Fiordos cruises 1, 4, 8, and 10, as were salinity and silicic acid concentrations in the surface waters. A principal component analysis segregated the Chiloé and Aysén interior seas into two zones: (i) the continental fjords, with sediment enriched in allochthonous organic matter, having higher C:N molar ratios (10–14) and lower δ13C composition (?23‰ to ?27‰); and (ii) the channels and gulfs, with a prevalent autochthonous marine source, having lower C:N values (6–10) and higher δ13C composition (?20‰ to ?23‰). Estuarine waters with low salinity (2–30) and high silicic acid (10–90 μM) were associated with high C:N ratios and low δ13C in surface sediments, meaning that terrestrial organic matter was transported up to the mouth of the continental fjords. A two-source mixing model confirmed that allochthonous (terrestrial) organic matter contents (50–90%) associated with local river discharges were present within the continental fjords. On the contrary, autochthonous (marine) organic matter was prevalent (50–90%) at the sites in the marine influenced channels, sounds, and gulfs.  相似文献   

4.
Ecosystems can act as both sources and sinks of allochthonous nutrients and organic matter. In this sense, fjord ecosystems are a typical interface and buffer zone between freshwater systems, glaciated continents, and the coastal ocean. In order to evaluate the potential sources and composition of organic matter across fjord ecosystems, we characterized particulate organic matter along a lake–river–fjord corridor in the Chilean Patagonia using stable isotope (δ13C) and lipid (fatty acid composition) biomarker analyses. Furthermore, estimates of zooplankton carbon ingestion rates and measurements of δ13C and δ15N in zooplankton (copepods) were used to evaluate the implications of allochthonous subsidies for copepods inhabiting inner fjord areas. Our results showed that riverine freshwater flows contributed an important amount of dissolved silicon but, scarce nitrate and phosphate to the brackish surface layer of the fjord ecosystem. Isotopic signatures of particulate organic matter from lakes and rivers were distinct from their counterparts in oceanic influenced stations. Terrestrial allochthonous sources could support around 68–86% of the particulate organic carbon in the river plume and glacier melting areas, whereas fatty acid concentrations were maximal in the surface waters of the Pascua and Baker river plumes. Estimates of carbon ingestion rates and δ13C in copepods from the river plume areas indicated that terrestrial carbon could account for a significant percentage of the copepod body carbon (20–50%) during periods of food limitation. Particulate organic matter from the Pascua River showed a greater allochthonous contribution of terrigenous/vascular plant sources. Rivers may provide fjord ecosystems with allochthonous contributions from different sources because of the distinct vegetation coverage and land use along each river’s watershed. These observations have significant implications for the management of local riverine areas in the context of any human project that may modify terrestrial habitats as well as the productivity, food webs, and community structure of rivers, lakes, fjords, and the coastal ocean in the Chilean Patagonia.  相似文献   

5.
Lake sediments are valuable natural archives to reconstruct paleoclimate and paleoenvironmental changes which consist of inorganic and organic sediment compounds of allochthonous origin from the catchment and of autochthonous production in the lake. However, for robust paleo-reconstructions it is important to develop a better understanding about sedimentation processes, the origin of inorganic and organic sediment compounds and their distribution within the lake. In this context, modern process studies provide important insights, although environmental and anthropological changes can affect the spatial distribution of sediment compounds through time. Therefore, in this study the spatial distribution of grain size and geochemical proxies in 52 surface sediment samples from Lake Khar Nuur, a small high-altitude lake in the Mongolian Altai with a small and anthropogenically used hydrological catchment, is investigated. The results show a distinct sediment focussing in the two deep basins of the lake, which therefore act as accumulation zones. In those accumulation zones, total organic carbon (TOC), total nitrogen (N) and their isotopic composition (δ13CTOC, δ15N) as well as n-alkanes indicate that organic sediment compounds are a mixture of both allochthonous and autochthonous origin. While the recent catchment vegetation consists of grasses/herbs and the shrub Betula nana (L.) with distinct differences in their n-alkane homologue patterns, those differences are not reflected in the sediment surface samples which rather indicates that grass-derived n-alkanes become preferentially incorporated in the lake. Extensive anthropogenic activity such as grazing and housing in the southern part of the catchment causes soil erosion which is well reflected by high TOC, N and sulphur (S) contents and 15N depleted δ15N values at the central southern shore, i.e. increased allochthonous sediment input by anthropogenically-induced soil erosion. Overall, the surface sediments of Lake Khar Nuur origin from allochthonous and autochthonous sources and are focussed in the accumulation zones of the lake, while their distribution is both environmentally and anthropogenically driven.  相似文献   

6.
In current palaeodietary research, gelatinization is the main method to extract insoluble collagen(ISC) from ancient bones. However, the degradation products of ISC, i.e., soluble collagen(SC), is often neglected and abandoned. In this work, we try to separate the extracts of ancient bones using gel chromatography and compare the contents of carbon and nitrogen, atomic C/N ratio, and stable carbon and nitrogen isotopic values of the extracts from three peaks to determine which peak can be attributed to SC. At last, the potential application of SC in palaeodietary research is discussed based on the comparison of stable isotopic values between ISC and SC. Among the three peaks, the second with the retention time between 17.5 min and 27.5 min had the most broad peak shape, indicating that the molecular weights of proteins collected were most variable. Besides, the contents of carbon and nitrogen and atomic C/N ratio of extracts in this peak were closest to the corresponding ISC. Based on the above, we conclude that the extract in second peak is SC. More important, the δ 13C and δ 15N values of ISC and SC are very similar. For ISC and SC with atomic C/N ratios within the normal range(2.9–3.6), the mean difference of δ 13C value was only(0.3±0.2)‰(n=2) while δ 15N value was(0.6±0.1)‰(n=2). Although the atomic C/N ratios of some SC are slightly beyond the normal range, the mean differences of δ 13C and δ 15N values were still only(0.4±0.1)‰ and(0.3±0)‰(n=2) respectively. These isotopic differences are quite below the isotope fractionation in one trophic level(δ 13C values of 1‰–1.5‰ and δ 15N values of 3‰–5‰), suggesting that SC had great application potentials in palaeodietary research.  相似文献   

7.
We evaluated changes in siliceous export production and the source of organic matter preserved in sediment core MD07-3109H recovered from the Gulf of Ancud, Chiloé Inner Sea (42°S, 72°W, water column depth: 328 m), southern Chile. We analyzed the abundance of siliceous microfossils (diatoms, silicoflagellates, sponge spicules, Chrysophyte cysts, phytoliths), geochemical proxies (weight percent silicon %SiOPAL, organic carbon, total nitrogen, C/N molar), and sediment stable isotopes (δ13Corg, δ15N). Chronology based on 210Pb and 14C provided an accumulated age of 144 years at the base of the core.Sediments of core MD07-3109H are predominantly marine in origin, averaging δ13Corg=–20.75‰±0.82, δ15N=8.7±0.35‰, and C/N=8.76±0.36. Marine diatoms compose 94% of the total assemblage of siliceous microfossils. Our record of productivity based on the mass accumulation rates of organic carbon, total nitrogen, SiOPAL, and total diatoms showed high values between 1863 and 1869 AD followed by a declining trend until 1921 AD, a transition period from 1921 to 1959 AD with fluctuating values, and a clear decreasing pattern from 1960 AD to the present. This marked reduction in productivity was associated with decreased precipitation and Puelo River streamflow (41°S), as well as a warmer and more stratified water column, especially since the 1980s.  相似文献   

8.
Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than ?44‰, ?29‰ and ?26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \(C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than ?10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

9.
Geochemical analysis of surface sediment samples collected in 2005 and 2006 was used to evaluate the potential sources of the organic matter present in sediments of southeast Poland's Solina Reservoir.Statistical analysis of sediment variables(carbon to nitrogen ratio, and the carbon 13 and nitrogen 15 isotope ratios) determined for the organic fraction indicated significant spatial variability with respect to sources of organic matter. A binary mixing model was developed from literature sources to predict the relative contributions of allochthonous and autochthonous production to sediment organic matter.Autochthonous production was shown to account for 60-75% of bulk sedimentation in the lacustrine parts of the reservoir, near the dam. In contrast, autochthonous production accounted for only 25% of sedimentation in the riverine zone receiving stream inputs. Statistical analysis identified the δ~(15)N of organic matter as the best predictor of the source of organic matter. Multiple regression analysis indicated that two water-quality variables(nitrate and dissolved silica) were significantly related to the δ~(15)N signature of organic matter. This led to a conclusion that limnetic nitrate and dissolved silica concentrations were regulating organic matter production in the Solina Reservoir.  相似文献   

10.
Otoliths are biogenic carbonate minerals in the inner ear of teleost fish, whose compositions can record the physical and chemical conditions of the ambient water environment inhabited by individual fish. In this research, the fishbones and otoliths of naked carp sampled near the Bird Island, offshore Lake Qinghai, were dated and analyzed for mineralogy and microchemical compositions. Comparing the microchemical compositions of ancient otoliths with those of modern otoliths, we conclude that the ancient naked carps inhabited a relict lake formed when the lake shrank from a high lake level, by combining with the AMS-14 C ages of fishbones and otoliths, the stratigraphy and surrounding topography of the sample site. AMS-14 C dating results of ancient fishbones and otoliths show that these naked carps lived from 680 to 300 years ago, i.e. during the Ming Dynasty of China. The X-ray diffraction(XRD) patterns demonstrate that the ancient lapillus is composed of pure aragonite, identical to modern one, indicating that the mineral of lapillus didn't change after a long time burial and that the ancient lapillus is suitable for comparative analysis thereafter. Microchemical results show that both ratios of Mg/Ca((70.12±18.50)×10?5) and ? 18O((1.76±1.03)‰) of ancient lapilli are significantly higher than those of modern lapilli(average Mg/Ca=(3.11±0.41)× 10?5 and ? 18O=(?4.82±0.96)‰). This reflects that the relict water body in which the ancient naked carp lived during the Ming Dynasty was characterized by higher Mg/Ca and ? 18 O ratios than modern Lake Qinghai, resulting from strong evaporation after being isolated from the main lake, similar to today's Lake Gahai. Based upon the stratigraphy and altitude of naked carp remains, it can be inferred that the altitude of lake level of Lake Qinghai reached at least 3202 m with a lake area of 4480 km2 during the Ming Dynasty, approximately ~5% larger than it is today.  相似文献   

11.
A double-spike method was used to obtain Mo isotope data for sediments and waters of the seasonally anoxic Chesapeake Bay, and its primary tributary, the Susquehanna River. The dissolved Mo distribution in the estuary is non-conservative, reflecting minor Mo loss to the sediments, although removal of Mo to the sediments does not have a large influence on the isotopic composition of the water column. The δ98Mo of dissolved Mo in most of the estuary is dominated by seawater. Six samples with salinity > 15 have an average δ98Mo = + 2.17‰ (± 0.12), which agrees well with a δ98Mo value for the CASS-4 seawater standard of + 2.23‰. A single sample of Susquehanna River water has a δ98Mo of + 1.02‰, consistent with recent findings of positive δ98Mo in rivers worldwide. Susquehanna river sediments, in contrast, have δ98Mo  ? 0.1‰. The difference between the river water and sediment values implies that isotopic fractionation occurs within the river basin. The δ98Mo values for estuarine sediments are offset from values in the overlying water. Most samples deposited before 1925 have δ98Mo less than 0‰, similar to the Susquehanna sediments. Subsequently, there is an increase in the variability of δ98Mo, with values ranging up to + 0.8‰. The transition to increased variability coincides with the onset of authigenic Mo deposition, which was previously attributed to escalating summertime anoxia. Authigenic Mo concentrations correlate poorly with δ98Mo in core samples, suggesting that independent mechanisms influence the two parameters. Authigenic Mo concentrations may be controlled by shifting pore water H2S levels, while δ98Mo may be primarily affected by annual variations in Mn refluxing.  相似文献   

12.
通过对鱼苗时期鄱阳湖网箱养殖区沉积物、饵料及鱼粪等样品总有机碳(TOC)含量、总氮(TN)含量、碳氮比(C/N)、δ^13 C及δ^15 N的测定,分析探讨了鄱阳湖网箱养殖区沉积物有机质来源,量化了网箱养殖废物对养殖区沉积物有机质的贡献.结果表明,网箱养殖区沉积物的δ^13 C和δ^15 N值分别为-27.67‰~-25.65‰和5.19‰~7.27‰,饵料的δ^13 C和δ^15 N值分别为-24.73‰和10.28‰,鱼粪的δ^13 C和δ^15 N值分别为-26.30‰和15.54‰.网箱养殖区沉积物有机质来源主要有残饵、浮游生物及其他来源,其贡献率分别为48.3%±11.4%、25.6%±11.3%及26.0%±5.8%,而鱼粪的贡献几乎可以忽略不计.在水动力平流引起的扩散及沉积物的再悬浮的影响下,网箱养殖源有机质的扩散距离达1500 m.在鱼苗时期,鱼类网箱养殖的残饵是鄱阳湖网箱养殖区沉积物有机质的主要来源.  相似文献   

13.
Suspended particulate organic matter (POM) in headwater streams is an important source of food and energy to stream food webs. In order to determine the effects of watershed land use on the sources and characteristics of POM, we compared the lipid composition of POM (fatty acid, aliphatic alcohol and sterol) from streams influenced by different types of watershed land use. Eight first-order streams discharging to the York River Estuary (Virginia, USA) were sampled during baseflow conditions bi-monthly from February to November 2009, including streams draining forest-dominated, pasture-dominated, cropland-dominated, and urban land-dominated watersheds. Allochthonous vs. autochthonous lipids showed that POM in most of these streams was dominated by allochthonous sources (59.5 ± 14.2 vs. 39.6 ± 14.5 % for aliphatic alcohols and 52.9 ± 11.5 vs. 34.1 ± 10.3 % for sterols). The relative abundance of allochthonous vs. autochthonous lipid inputs to POM varied as a function of land use type. POM in streams draining forest-dominated watersheds contained a higher proportion of allochthonous lipids and a lower proportion of autochthonous lipids than the streams influenced by human land use. The contribution of bacterial fatty acids differed significantly among sampling times (P = 0.003), but not among land use types (P = 0.547). Stepwise linear regression model selected nitrate and temperature as the best predictors of variation in bacterial inputs to POM. Proxies used to assess the nutritional value of POM potentially available to stream consumers included C:N ratios, and the concentrations of total long-chain polyunsaturated fatty acids, eicosapentaenoic acid, arachidonic acid, and cholesterol. None of these nutritional proxies differed among sampling months (P ≥ 0.171), but the proxies showed that the nutritional value of POM in forest streams was lower than in urban streams. Collectively, these findings suggest that human land use in upstream watersheds alters the source composition and nutritional value of stream POM, which not only impacts food quality for stream biota, but also potentially changes the characteristics of OM reaching downstream ecosystems.  相似文献   

14.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

15.
Organic carbon isotope(δ13Corg) data from two well-preserved sections across a shallow-to-deep water transect of the late Ediacaran-Early Cambrian Yangtze Platform in South China show significant temporal and spatial variations. In the shallow-water Jiulongwan-Jijiapo section, δ13Corg values of the late Ediacaran Dengying Formation range from -29‰ to -24‰. In the deep-water Longbizui section, δ13Corg values from time-equivalent strata of the Dengying Formation are mostly between –35‰ and -32‰. These new data, in combination with δ13Corg data reported from other sections in South China, reveal a 6‰–8‰ shallow-to-deep water δ13Corg gradient. High δ13Corg values(-30‰) occur mostly in shallow-water carbonate rocks, whereas low δ13Corg values(-32‰) dominate the deep-water black shale and chert. The large temporal and spatial δ13Corg variations imply limited buffering effect from a large dissolved organic carbon(DOC) reservoir that was inferred to have existed in Ediacaran-Early Cambrian oceans. Instead, δ13Corg variations between platform and basin sections are more likely caused by differential microbial biomass contribution to total organic matter. High δ13Corg values(-30‰) documented from shallow-water carbonates are within the range of typical Phanerozoic δ13Corg data and may record the isotope signature of organic matter from primary(photosynthetic) production. In contrast, low δ13Corg values(-32‰) from deep-water sections may have resulted from higher chemoautotrophic or methanotrophic biomass contribution to bulk organic matter in anoxic environments. The δ13Corg data provide indirect evidence for ocean stratification and episodic chemocline fluctuations in the Ediacaran-Early Cambrian Yangtze Platform.  相似文献   

16.
To assess the environmental perturbation induced by the impact event that marks the Cretaceous–Tertiary (K–T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K–T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record δ13C values of plant-derived organic matter, reflecting the δ13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the δ13C values of organic matter derived from plants and microbiota. The microbiota δ13C value reflects not only the δ13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds.Across the freshwater K–T boundary at Brownie Butte, the δ13C values decrease by 2.6‰ (from − 26.15‰ below the boundary clay to − 28.78‰ above the boundary clay), similar to the trend in carbonate at marine K–T sites. This means that the organic δ13C values reflect the variation of δ13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in δ13C values is observed across the K–T boundary at Dogie Creek (from − 25.32‰ below the boundary clay to − 26.11‰ above the boundary clay), the degree of δ13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate.About 2‰ decrease in δ13C of atmospheric CO2 was expected from the δ13C variation of marine carbonate at the K–T boundary. This δ13C-decrease of atmospheric CO2 should affect the δ13C values of organic matter derived from plant tissue. As such a decrease in δ13C value was not observed at Dogie Creek, a process that compensates the δ13C-decrease of atmospheric CO2 should be involved. For example, the enhanced contribution of 13C-enriched organic matter derived from algae in a high-productivity environment could be responsible. The δ13C values of algal organic matter become higher than, and thus distinguishable from, those of plant organic matter in situations with high productivity, where dissolved HCO3 becomes an important carbon source, as well as dissolved CO2. As the δ13C-decrease of atmospheric CO2 reflected a reduction of marine productivity, the compensation of the δ13C decrease by the enhanced activity of the terrestrial microbiota means that the microbiota at freshwater environment recovered more rapidly than those in the marine environment.A distinct positive δ13C excursion of 2‰ in the K–T boundary clays is superimposed on the overall decreasing trend at Dogie Creek; this coincides with an increase in the content of organic carbon. We conclude that the K–T boundary clays include 13C-enriched organic matter derived from highly productive algae. Such a high biological productivity was induced by phenomena resulting from the K–T impact, such as nitrogen fertilization and/or eutrophication induced by enhanced sulfide formation. The high productivity recorded in the K–T boundary clays means that the freshwater environments (in contrast to marine environments) recovered rapidly enough to almost immediately (within 10 yr) respond to the impact-related environmental perturbations.  相似文献   

17.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

18.
In this paper, Lake Taihu, a large shallow freshwater lake in China, is chosen as an example of reconstruction of eutrophication through the comparison between stable isotopes from dissolved nutrients and plants and water column nutrient parameters and integration of multiple proxies in a sediment core from Meiliang Bay including TN, TP, TOC, C/N, δ 15N, δ 13C, etc. Differences in aquatic plant species and trophic status between East Taihu Bay and Meiliang Bay are indicated by their variations in δ 13C and δ 15N of aquatic plants and δ 15N of NH4 +. A significant influence of external nutrient inputs on Meiliang Bay is reflected in temporal changes in δ 15N of NH4 + and hydro-environmental parameters. The synchronous change between δ 13C and δ 15N values of sedimented organic matter (OM) has been attributed to elevated primary production at the beginning of eutrophication between 1950 and 1990, then recent inverse correlation between them has been caused by the uptake of 15N-enriched inorganic nitrogen by phytoplankton grown under eutrophication and subsequent OM decomposition and denitrification in surface sediments, indicating that the lake has suffered from progressive eutrophication since 1990. Based on the use of a combination of stable isotopes and elemental geochemistry, the eutrophication of Meiliang Bay in Lake Taihu could be better traced. These transitions of the lake eutrophication respectively occurring in the 1950s and 1990s have been suggested as a reflection of growing impacts of human activities, which is coincident with the instrumental data.  相似文献   

19.
The sulphur isotope composition of 16 pyrite and chalcopyrite samples from recent sulphide deposits (“Cyana”—project RITA) and active sulphide mineralisation (“Alvin”—project RISE) associated with hydrothermal sources at 380±30°C on the East Pacific Rise at latitude 21°N have been measured. The34S/32S ratios are relatively uniform and essentially identical for both sites: δ34S=+1.4to3.0%. (CDT), mean +2.1‰. The sulphides were analysed after the majority of the very numerous micro-inclusions of anhydrite had been removed.Two independent physico-chemical analyses of the data demonstrate that about 90% of the sulphur was leached from the basaltic host rocks by the circulating seawater-hydrothermal fluids.  相似文献   

20.

Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than −44‰, −29‰ and −26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \( C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than −10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号