首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the occurrence characteristics of equatorial spread-F irregularities and their latitudinal extent, simultaneous digital ionosonde data (January–December 2001) from Trivandrum (8.2°N), Waltair (17.7°N) and Delhi (28.6°N) and 4 GHz scintillation data from Sikandarabad (26.8°N) and Chenglepet (10.4°N), and 250 MHz scintillation data from Bhopal (23.2°N) for equinoxes period are analysed. It is noted that except summer months, occurrence of spread F is always maximum at Trivandrum, minimum at Delhi and moderate at Waltair. During equinoxes and winter months. Their occurrences at higher latitude station are always conditional to their prior occurrences at lower latitudes indicating their association with the generation of equatorial plasma bubble and associated irregularities. Scintillation occurrences also follow the similar pattern. During the summer months, the spread-F occurrences are highest at equatorial location Trivandrum, moderate at Delhi and minimum at Waltair and seem to be caused by irregularities generated locally especially over Delhi.To gain forecasting capability, night-to-night occurrences of spread-F/scintillation at these locations are examined in relation to post sunset rise of h’F and upward ExB drift velocity over the magnetic equator using Trivandrum ionosonde data. It is noted that except the summer months, the spread-F at Trivandrum, Waltair and Delhi are observed only when equatorial ExB (h’F) is more than about 15 m/s (325 km), 20 m/s (350 km) and 25 m/s (375 km), respectively. With these threshold values their corresponding success rate of predictions are more than 90%, 50% and 15% at the respective locations. Whereas in the case of GHz scintillations near equator are observed only when ExB (h’F) is more than 15 m/s (325 km), whereas for low latitude, the same should be 30 m/s (400 km) and their success rate of prediction is about 90% and 30%, respectively. The intensity of 4 GHz scintillation at low latitude is also found to be positively correlated with equatorial upward ExB drift velocity values, whereas correlation is poor with that of equatorial scintillations. In conclusions, near magnetic equator threshold values of ExB or h’F can be successfully used for the night-to-night prediction of spread-F/scintillations occurrences, whereas these are necessary but not sufficient for their prediction at higher latitudes. For that some other controlling parameters like background electron density, neutral winds, gravity waves, etc. should also be examined.  相似文献   

2.
A simple new technique for measuring gravity-wave activity using meteor radars is described. The technique uses the variance of horizontal wind velocities measured by individual meteors as a proxy for the activity of the gravity-wave field. It is sensitive to gravity waves with horizontal wavelengths of up to about 400 km and periods up to about 3 h. The technique can be used to investigate the vertical structure of the gravity-wave field at heights between approximately 80 and 100 km and with a time resolution of approximately 6 h. The technique is demonstrated using data from an all-sky meteor radar based at Rothera, Antarctica (68°S, 68°W). Observations made over Rothera for 2006 and 2007 reveal a seasonal behaviour with a semi-annual cycle in wave activity. Wave activity maximises in summer and winter and minimises at the equinoxes. Monthly mean gravity-wave activity increases with height in all seasons except in summer when gravity-wave variances show little or no increase with height below 90 km. Comparisons between the gravity-wave activity determined by this meteor-variance technique and other measurements at similar latitudes in the Antarctic reveal generally good agreement.  相似文献   

3.
A study on variability of the equatorial ionosphere was carried out at fixed heights below the F2 peak for two different levels of solar activity. The study covered height range of 100 km up to the peak of F2 layer using a real height step increase of 10 km. The variability index used is the percentage ratio of standard deviation over the average value for the month. Daytime minimum variability of between 3% and 10% was observed at height range of about 150–210 km during low solar activity and between 2% and 7% at height range of 160–220 km during high solar activity. The nighttime maximum of between 70% and 187% was observed at height range of about 210–250 km during low solar activity and between 42% and 127% at height range of 210–250 km during high solar activity. The height range at which daytime minimum was observed falls within the F1 height of the ionosphere. The result obtained is consistent with previous works carried out in the low latitude locations for American sector.  相似文献   

4.
This paper deals with the diurnal and seasonal variations of height of the peak electron density of the F2-layer (hmF2) derived from digital ionosonde measurements at a low–middle-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N). Diurnal and seasonal variations of hmF2 are examined and comparisons of the observations are made with the predictions of the International Reference Ionosphere (IRI-2001) model. Our study shows that during both the moderate and low solar activity periods, the diurnal pattern of median hmF2 reveals a more or less similar trend during all the seasons with pre-sunrise and daytime peaks during winter and equinox except during summer, where the pre-sunrise peak is absent. Comparison of observed median hmF2 values with the IRI during moderate and low solar activity periods, in general, reveals an IRI overestimation in hmF2 during all the seasons for local times from about 06 LT till midnight hours except during summer for low solar activity, while outside this time period, the observed hmF2 values are close to the IRI predictions. The hmF2 representation in the IRI model does not reproduce pre-sunrise peaks occurring at about 05 LT during winter and equinox as seen in the observations during both the solar activity periods. The noontime observed median hmF2 values increase by about 10–25% from low (2004–2005) to high solar activity (2001–2002) during winter and equinox, while the IRI in the same time period and seasons shows an increase of about 10–20%. During summer, however, the observed noontime median hmF2 values show a little increase with the solar activity, as compared to the IRI with an increase of about 12%.  相似文献   

5.
We report observations of seasonal and local time variation of the averaged electron and iron concentrations, as well as simultaneous measurements of the two species, above the Arecibo Observatory (18.35°N, 66.75°N), Puerto Rico. The average Fe profile between 21:00 and 24:00 LT has a single peak at about 85 km with the exception of the summer when an additional peak exists at about 95 km. The higher Fe peak in the summer is correlated with higher electron concentrations in this season. The three nights of simultaneous measurements of electron and iron concentrations show that narrow layers of Fe and electrons are well correlated. Comparison of the climatological and simultaneous Fe and electron data suggests that recombination of Fe+ plays an important role in determining the Fe profile in the upper part of the Fe layer. Above 93 km, the Fe concentration appears to increase after sunset if the electron concentration exceeds about 4000 electrons cm−3. The average rate of Fe production is about 0.1 atom cm−3 s−1 for all seasons at 100 km in the early evening hours. A chemical model reveals that the concentration of Fe+ must be 50–80% of the total ionization over Arecibo for typical equinox conditions to explain the observed rate of Fe production. These high relative Fe+ concentrations are consistent with in situ observations that Fe+ is usually the dominant ion in sporadic E layers in the nighttime lower E region. This suggests that the source of Fe+ is provided by sporadic E layers descending over Arecibo after sunset. The Fe density between 80 and 85 km decreases during the night, for all seasons. This is attributed to the formation of stable molecular Fe species, such as FeOH, due to the increase in O3 and decrease in atomic O and H during the night at these altitudes.  相似文献   

6.
Diurnal and seasonal variations of bottom side electron density profile shape parameters B0, B1, representing the bottom side F2-layer thickness and shape, are examined using modern digital ionosonde observations at a low-middle latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N) for high solar activity (HSA) (2001–2002). Median values of these parameters are obtained at each hour during different seasons and compared with the predictions of the latest version of the international reference ionosphere (IRI), IRI-2001 model using both the options namely: IRI (Gulyaeva) and IRI (B0 Tab.). Results show in general, a large variability in B0, and B1 parameters during all the seasons, the variability is larger during nighttime than by daytime. The diurnal variation of median B0, in general, show more or less similar trends with diurnal maximum occurring around noontime, except during summer, when it occurs between 09 and 10 LT. Variation pattern of B1 in general, is identical in all the seasons with lower values of B1 by daytime than by night. Comparative studies of B0 with those obtained with the IRI model show that in general, IRI (B0 Tab.) option reveals better agreement with the observations during all the seasons for local times from about 10 LT to about 16 LT, while outside this time period IRI (Gulyaeva) matches well with the observations. The predicted B1 parameter, using IRI (B0 Tab.) is close to observations in terms of diurnal variation, while B1 using IRI (Gulyaeva) option, assumes a fixed value of 3 at all local times irrespective of season.  相似文献   

7.
The paper is focused on the global spatial structure, seasonal and interannual variability of the ~5-day Rossby (W1) and ~6-day Kelvin (E1) waves derived from the SABER/TIMED temperature measurements for 6 full years (January 2002–December 2007). The latitude structure of the ~5-day W1 wave is related to the gravest symmetric wave number 1 Rossby wave. The vertical structure of the ~5-day Rossby wave amplitude consists of double-peaked maxima centred at ~80–90 km and ~105–110 km. This wave has a vertically propagating phase structure from the stratosphere up to 120 km altitude with a mean vertical wavelength of ~50–60 km. The ~6-day E1 wave is an equatorially trapped wave symmetric about the equator and located between 20°N and 20°S. Its seasonal behaviour indicates some equinoctial and June solstice amplifications, while the vertical phase structure indicates that this is a vertically propagating wave between 20–100 km altitudes with a mean vertical wavelength of ~25 km.  相似文献   

8.
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10–15 K at altitudes 70–80 km and of gravity wave potential energy at 60–70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50–70 km in the wavelet spectrum of TIMED–SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.  相似文献   

9.
We report observations of a noctilucent cloud (NLC) over central Alaska by a ground-based lidar and camera on the night of 9–10 August 2005. The lidar at Poker Flat Research Range (PFRR), Chatanika (65°N, 147°W) measured a maximum integrated backscatter coefficient of 2.4×10?6 sr?1 with a peak backscatter coefficient of 2.6×10?9 m?1 sr?1 corresponding to an aerosol backscatter ratio of 120 at an altitude of 82.1 km. The camera at Donnelly Dome, 168 km southeast of PFRR, recorded an extensive NLC display across the sky with distinct filamentary features corresponding to wave structures measured by the lidar. The occurrence of the maximum integrated backscatter coefficient corresponded to the passage of a bright cloud band to the southwest over PFRR. The camera observations indicate that the cloud band had a horizontal width of 50 km and a length of 150 km. The horizontal scale of the cloud band was confirmed by medium-frequency radar wind measurements that reported mesopause region winds of 30 m/s to the southwest during the period when the cloud band passed over PFRR. Comparison of these measurements with current NLC microphysical models suggests a lower bound on the water vapor mixing ratio at 83 km of 7–9 ppmv and a cloud ice mass of 1.5–1.8×103 kg. Satellite measurements show that this NLC display occurred during a burst of cloud activity that began on 5 August and lasted for 10 days. This cloud appeared 10 days after a launch of the space shuttle. We discuss the appearance of NLCs in August over several years at this lower polar latitude site in terms of planetary wave activity and space shuttle launches.  相似文献   

10.
The Narmada–Son Lineament (NSL) Zone is the second most important tectonic feature after Himalayas, in the Indian geology. Magnetotelluric (MT) studies were carried out in the NSL zone along a 130 km long NNE-SSW trending profile. The area of investigation extends from Edlabad (20°46′16″; 75°59′05″) in the South to Khandwa (21°53′51″; 76°18′05″) in the North. The data shows in general the validity of a two-dimensional (2D) approach. Besides providing details on the shallow crustal section, the 2D modeling results resolved four high conductive zones extending from the middle to deep crust, spatially coinciding with the major structural features in the area namely the Gavligarh, Tapti, Barwani-Sukta and Narmada South faults. The model for the shallow section has brought out a moderately resistive layer (30–150 Ω m) representing the exposed Deccan trap layer, overlying a conductive layer (10–30 Ω m) inferred to be the subtrappean Gondwana sediments, the latter resting on a high resistive basement/upper crust. The Deccan trap thickness varies from around a few hundred meters to as much as 1.5 km along the traverse. A subtrappean sedimentary basin like feature is delineated in the northern half of the traverse where a sudden thickening of subtrappean sediments amounting to as much as 2 km is noticed. The high resistive upper crust is relatively thick towards the southern end and tends to become thinner towards the middle and northern part of the traverse. The lower crustal segment is conductive over a major part of the profile. Considering the generally enhanced heat flow values in the NSL region, coupled with characteristic gravity highs and enhanced seismic velocities coinciding with the mid to lower crustal conductors delineated from MT, presence of zones of high density mafic bodies/intrusives with fluids, presumably associated with magmatic underplating of the crust in the zone of major tectonic faults in NSL region are inferred.  相似文献   

11.
We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~ 23 km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°–344° with dip of 26°–41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5 MPa. The derived geodetic moment of 2.92 × 1018 N-m is equivalent to a Mw = 6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24 km and maximum slip of 190 mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7–15 km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~ 20–23 km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.  相似文献   

12.
In situ measurements of electron density were made over Trivandrum (8.5°N, 76.9°E) during nighttime to study E-region plasma density irregularities. Irregularities, with vertical scale sizes from a few km to 15 cm, were detected during rocket ascent and descent. Electron density profiles during ascent and descent of an earlier nighttime rocket flight from Trivandrum are also presented. Some of the important results are as follows: (i) horizontal gradients in electron density exist in 110–120 km region with horizontal scale size of at least 40 km, (ii) based on the presence/absence of electron density structures during ascent and descent of both flights, the horizontal distance over which the gradient drift instability operates is found to be at least 80 km and 90 km, for both the flights, (iii) observed irregularities in regions of negative density gradient are suggested to be produced through the gradient drift instability (GDI) driven by vertical polarization electric field as well as by electric field produced through wind shears and those in positive gradient regions by wind driven GDI, (iv) largest irregularity amplitude (≈30%) was associated with steepest gradients and so was the presence of smallest vertical scale sizes (12 m to 15 cm), which were absent at other altitudes, (v) the spectral index of irregularities was in the range of ?2.2±0.2 for large scales (few kilometers>λ>50 m), ?3.25±0.25 for medium scales (50 m>λ>10 m) and ?2.6±0.1 for smaller scales (10 m>λ>1 m) and (vi) irregularities in large and medium scales are expected to be produced directly through GDI and the small and sum-meter scales through non-linear GDI.  相似文献   

13.
We show examples of common volume observations of three metals by lidar focusing on the altitude of the topside of the meteoric metal layer as described by Höffner and Friedman (H&F) [The mesospheric metal layer topside: a possible connection to meteoroids, Atmos. Chem. Phys. 4 (2004) 801–808]. In contrast to H&F, we will focus on time scales of a few hours and less whereas the previous study examined the seasonally averaged climatological state on time scales of several days or weeks, and we examine the entire topside, whereas H&F focused on data at 113 km. The examples, taken under different observation conditions in 1997 and 1998 at Kühlungsborn, Germany (54°N, 15°E), show that the metal layers can often be observed at altitudes as high as 130 km if the signal is integrated over a period of several hours. Under such conditions it is possible to derive reasonably good metal abundance ratios from nocturnally averaged data, which, in turn, allow the discussion of metal abundance ratios to broaden from a single altitude as discussed in H&F to an altitude range extending as high as 130 km. The examples herein show, for the first time, that it is possible to track the transition in the metal abundance ratios from the main layer to an altitude region that has not been studied in the past by lidar. On shorter time scales, small structures are detectable and observable, sometimes above 120 km, resulting in, on average, a broad but weak topside layer above 105 km. In particular, the example of 26–27 October 1997, obtained during enhanced meteor activity, is an indication that this broad layer may result from meteor ablation occurring in this altitude range during the observation. Ratios of metal densities for Ca, Fe, K, and Na are remarkably consistent above about 110 km and in close agreement with the results of H&F. They are less consistent with ratios measured in individual meteor trails and appear to have little relation to the ratios measured in CI meteorites. Finally, it is the temporal smoothing of descending sporadic metal atom layers on top of an undisturbed background metal layer that is the basis of the summer topside extension as described by H&F.  相似文献   

14.
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), a limb sounding Fourier transform interferometer in the mid-infrared band, on board the polar-orbiting ENVIronmental SATellite (ENVISAT) was launched in March 2002 by the European Space Agency (ESA). For the MIPAS data validation, three balloon flights with MIPAS-B, a balloon version of MIPAS, were carried out on the 24th and 25th of September 2002 from Aire sur l’Adour (France 44°N, 0°E), on the 20th and 21th of March, and on the 2nd and 3rd of July 2003 from Esrange, Kiruna (Sweden 68°N, 21°E). The MIPAS operational data version 4.61 for the temperature vertical profiles were compared with the correlative MIPAS-B measurements via the coincident comparison and the trajectory comparison approaches, respectively. The precision of the MIPAS temperature was estimated to be 1.04–2.48 K in the region 123–8 hPa (15–33 km) and beyond the expectation. The systematic difference shows that the absolute accuracy of the MIPAS temperature is within the total combined errors between 356 and 3 hPa (8–39 km). The agreements in the middle stratosphere are better than in the lower stratosphere and upper troposphere. The maximum difference of 1.9 K (0.9%) was found at 228 hPa (11 km). The biases of MIPAS measurements are ?0.39 K (?0.19%) and +0.25 K (+0.12%) (“+” positive bias, “?” negative bias) corresponding to the altitude regions 143–31 hPa (14–24 km) and 31–5 hPa (24–37 km), respectively.  相似文献   

15.
Explosion deep seismic sounding data sections of high quality had been obtained with RV Meteor in the Reykjanes Iceland Seismic Project (RRISP77 [Angenheister, G., Gebrande, H., Miller, H., Goldflam, P., Weigel, W., Jacoby, W.R., Pálmason, G., Björnsson, S., Einarsson, P., Pavlenkova, N.I., Zverev, S., Litvinenko, I.V., Loncarecic, B., Solomon, S., 1980. Reykjanes Ridge Iceland Seismic Experiment (RRISP 77). J. Geophys. 47, 228–238]) which close an information gap near 62°N. Preliminary results were presented by Weigel [Weigel, W., 1980. Aufbau des Reykjanes Rückens nach refraktionsseismischen Messungen. In: Weigel, W. (Ed.), Reykjanes Rücken, Island, Norwegischer Kontinentalrand. Abschlusskolloquium, Hamburg zur Meteor-Expedition, vol. 45. DFG, Bonn, pp. 53–61], and here we report on the data and results of interpretation. Clear refracted phases to 90 km distance permit crustal and uppermost mantle structure to be modelled by ray tracing. The apparent P-wave velocities are around 4.5, 6–6.5, 7–7.6 and 8.2–8.7 km/s, but no wide-angle reflections have been clearly seen. Accompanying sparker reflection data reveal thin sediment ponds in the axial zone and up to 400 m thick sediments at 10 Ma crustal age. Ray tracing reveals the following model below the sediments: (1) a distinct, 1–2 km thick upper crust (layer 2A) with Vp increasing with age (to 10 Ma) from <3.4 to 4.9 km/s and with a vertical gradient of 0.1–0.2 km/s/km, (2) a lower crust or layer 3 beginning at depths of 2 (axis) to 4 km (10 Ma age) below sea level with 6.1–6.8 km/s and similar vertical gradients as above, (3) the lower crust bottoms at 5.2–9.5 km depth below sea level (0–10 Ma) with a marked discontinuity, underneath which (4) Vp rises from about 7.5–7.8 km/s (0–10 Ma) with a positive vertical gradient of, again, 0.1–0.2 km/s/km such that 8 km/s would be reached at 12 km and deeper near the axis. Our preferred interpretation is that the mantle begins at the distinct discontinuity (“Moho”), but a deeper “Moho” of Vp  8 km/s cannot be excluded. From Iceland southward to 60°N several experiments show a decrease of crustal thickness from 14 to 8 km. Velocity trends with age across the ridge reflect cooling and filling of cracks, and thickness trends probably suggest volcanic productivity variations as previously suggested.Gravity inversion concentrates on a profile across the ridge with the above seismic a priori information; with 0.2–0.5 km depth uncertainty it leads to a good fit (±2.5 mGal where seismic data exist). Best fitting densities are (in kg/m3) for sediments, 2180; upper crust, 2450–2570; lower crust, 2850–2940; mantle lithosphere, 3215–3240 with a deficit for an asthenospheric wedge of no more than −100 kg/m3. The morphological ridges and troughs superimposed on the SE ridge flank are partly correlated, partly anti-correlated with the Bouguer anomaly and suggest that variable crustal density variations accompany the morphology variations.  相似文献   

16.
In this paper, we investigate the solar flare effects of the ionosphere at middle latitude with a one-dimensional ionosphere theoretical model. The measurements of solar irradiance from the SOHO/Solar EUV Monitor (SEM) and GOES satellites have been used to construct a simple time-dependent solar flare spectrum model, which serves as the irradiance spectrum during solar flares. The model calculations show that the ionospheric responses to solar flares are largely related to the solar zenith angle. During the daytime most of the relative increases in electron density occur at an altitude lower than 300 km, with a peak at about 115 km, whereas around sunrise and sunset the strongest ionospheric responses occur at much higher altitudes (e.g. 210 km for a summer flare). The ionospheric responses to flares in equinox and winter show an obvious asymmetry to local midday with a relative increase in total electron content (TEC) in the morning larger than that in the afternoon. The flare-induced TEC enhancement increases slowly around sunrise and reaches a peak at about 60 min after the flare onset.  相似文献   

17.
《Continental Shelf Research》2006,26(17-18):2141-2156
A predominant sigmoidal clinoform deposit extends from the Yangtze River mouth southwards 800 km along the Chinese coast. This clinoform is thickest (∼40 m) between the 20 and 30 m isobaths and progressively thins offshore, reaching water depths of 60 and 90 m and distances up to 100 km offshore. Clay mineral, heavy metal, geochemical and grain-size analyses indicate that the Yangtze River is the primary source for this longshore-transported clinoform deposit. 210Pb chronologies show the highest accumulation rates (>3 cm/yr) occur immediately adjacent to the Yangtze subaqueous delta (north of 30 °N), decreasing southward alongshore and eastward offshore. The interaction of strong tides, waves, the China Coastal Current, winter storms, and offshore upwelling appear to have played important roles in trapping most Yangtze-derived sediment on the inner shelf and transporting it to the south.  相似文献   

18.
Coloumbo submarine volcano lies 6.5 km offshore the NE part of the Santorini island complex and exhibits high seismicity along with vigorous hydrothermal activity. This study models the local stress field around Coloumbo's magma chamber and investigates its influence on intrusion emplacement and geometry. The two components of the stress field, hoop and radial stress, are calculated using analytical formulas that take into account the depth and radius of the magma chamber as these are determined from seismological and other observations. These calculations indicate that hoop stress at the chamber walls is maximum at an angle of 74° thus favouring flank intrusions, while the radial stress switches from tensile to compressive at a critical distance of 5.7 km from the center of the magma chamber. Such estimates agree well with neotectonic and seismological observations that describe the local/regional stress field in the area. We analyse in detail the case where a flank intrusion reaches the surface very near the NE coast of Thera as this is the worst-case eruption scenario. The geometrical features of such a feeder dyke point to an average volumetric flow rate of 9.93 m3 s−1 which corresponds to a Volcanic Explosivity Index of 3 if a future eruption lasts about 70 days. Hazards associated with such an eruption include ashfall, ballistic ejecta and base surges due to explosive mixing of magma with seawater. Previous studies have shown that areas near erupting vents are also foci of moderate to large earthquakes that precede or accompany an eruption. Our calculations show that a shallow event (3–5 km) of moment magnitude 5.9 near the eruptive vent may cause Peak Ground Acceleration in the range 122–177 cm s−2 at different locations around Santorini. These values indicate that seismic hazard even due to a moderate earthquake near Coloumbo, is not trivial and may have a significant impact especially on older buildings at Thera island.  相似文献   

19.
We used bottomside ground observations and topside sounding data from the Intercosmos-19 satellite to study a Travelling Ionospheric Disturbance (TID) that occurred in response to Large-Scale Internal Gravity Wave (LSIGW) propagation during a substorm on November 30, 1979. We built a global scheme for the wavelike ionospheric variations during this medium substorm (AEmax ~800 nT). The area where the TID was observed looks like a wedge since it covers the nighttime hours at subauroral latitudes but contracts to a ~02 h local sector at low latitudes. The ionospheric response is strongly asymmetric because the wedge area and the TID amplitude are larger in the winter hemisphere than in the summer hemisphere. Clear evidence was obtained indicating that the more powerful TID from the Northern (winter) hemisphere propagated across the equator into the low latitude Southern (summer) hemisphere. Intercosmos-19 observations show that the disturbance covers the entire thickness of the topside ionosphere, from hmF2 up to at least the 1000 km satellite altitude at post-midnight local times. F-layer lifting reached ~200 km, Ne increases in the topside ionosphere by up to a factor of ~1.9 and variations in NmF2 of both signs were observed. Assumptions are made concerning the reason for the IGW effect at high altitudes in the topside ionosphere. The relationship between TID parameters and source characteristics determined from a global network of magnetometers are studied. The role of the dayside cusp in the generation of the TID in the daytime ionosphere is discussed. The magnetospheric electric field effects are distinguished from IGW effects.  相似文献   

20.
《Continental Shelf Research》2008,28(18):2594-2600
We analyzed the temporal and vertical distribution of biogenic (BSi) and lithogenic (LSi) silica, and diatom abundance in the upwelling center off Concepción, Chile, from April 2004 to May 2005. Measurements were performed at the FONDAP COPAS Time Series Station 18 (36°30.8′S, 73°07.7′W; 88 m water depth), and were combined with primary production estimates and river runoff data to assess the relationships between water column BSi and primary production, and between LSi and river runoff. Throughout the sampling period, water-column-integrated (0–80 m) BSi averaged 252±287 mmol m−2, and was about six times higher than average LSi (44±30 mmol m−2). The highest water column BSi observed during the upwelling season (786±281 mmol m−2) coincided with increments in total diatom abundance, and high integrated chlorophyll a concentration and primary production. In contrast, LSi was nearly two times higher in winter (85±43 mmol m−2) than the annual average, in agreement with the period of substantial discharges from the Itata and Bio-Bio rivers. The observed temporal patterns in BSi and LSi are coincident with primary production-related factors and riverine outflow, respectively, suggesting that the BSi and LSi pools are separate. With respect to the vertical distribution in the water column, most of the BSi and diatoms were found in surface waters (0–30 m depth), whereas LSi was most abundant at depth. Our study attempts to make an inventory of both BSi and LSi in the water column off Concepción, and gives the present-day background information necessary to assess potential future changes in the hydrological cycle that, in turn, may induce modifications in the Si path from the watersheds to the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号