首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
利用降尺度方法对CMIP5全球气候模式进行空间降尺度并以此研究鄱阳湖流域未来气候时空变化趋势,能够为流域生态环境保护提供数据、技术和理论上的支持.通过简化原始网络结构,在网络首部添加插值层,采用反卷积算法作为上采样算法对传统U-Net网络进行改进,建立基于深度学习的气候模式空间降尺度模型(DLDM).以1965-200...  相似文献   

2.
陶纯苇  姜超  孙建新 《地球物理学报》2016,59(10):3580-3591
应用CN05观测资料,以及参与国际耦合模式比较计划第5阶段(CMIP5)中的26个模式,评估了新一代全球气候模式对东北三省气候变化模拟能力并选出4个较优模式,发现经过筛选得出的较优模式集合平均模拟结果的可靠性得到进一步加强,尤其体现在对气温的模拟上.在此基础上着重分析了多模式集合在不同典型浓度路径(RCPs)下对未来气候变化特征的预估.结果表明:21世纪的未来阶段,东北三省将处于显著增温的状态,且RCP8.5情景下的增温速率(0.53℃/10a)明显高于RCP4.5情景下的速率(0.22℃/10a);空间上,北部地区将成为增温幅度最大、增温速率最高的区域.未来降水将会相对增加,但波动较大,21世纪末期RCP4.5和RCP8.5情景下的降水增加幅度分别为11.24%和15.95%;空间上,辽宁省西部地区将成为降水增加最为显著的区域.根据水分盈亏量,21世纪未来阶段,RCP4.5情景下的东北三省绝大多数地区未来将相对变湿,尤其到了中后期;RCP8.5情景下则是中西部地区将相对变干,其余地区则会相对变湿.  相似文献   

3.
SRES情景下多模式集合对淮河流域未来气候变化的预估   总被引:2,自引:0,他引:2  
吴迪  严登华 《湖泊科学》2013,25(4):565-575
采用偏差修正/空间降尺度方法处理后的IPCC AR4中8个全球海气耦合模式的集合平均结果,分析了SRESA2、A1B和B1情景下淮河流域未来30 a(2011 2040年)相对于现状(1961 1990年)地面温度和降水的可能变化.结果表明:(1)多模式集合能较好地反映流域现状年、季温度和降水的大尺度空间分布特征;对温度和降水的年内分配过程模拟较好,各月温度集合平均与观测值相差0.2℃左右(冬季各月除外),而降水集合平均与观测值相对误差在5%左右(9月除外).(2)不同情景下未来流域年、季温度一致增加,年温度增加幅度在0.85~1.12℃之间;冬、春季温度增加相对明显,而夏、秋季温度增加并不显著;年际和年代际温度增加趋势显著.(3)不同情景下未来流域年降水有增加趋势,增加幅度为0.13%~5.24%,增幅不明显;降水季节变化有增有减,季节、年际和年代际降水变化较为复杂,不同情景下降水空间变化差异显著.  相似文献   

4.
1961-2003年间鄱阳湖流域气候变化趋势及突变分析   总被引:19,自引:2,他引:19  
本文利用1961-2003年间鄱阳湖流域14个气象站的气温、降水量、蒸发量等观测数据和8个主要水文站的流量数据,研究该时段内鄱阳湖流域的气候变化趋势、突变及其空间分布的差异.研究表明,鄱阳潮流域气温和降水均在1990年发生突变,继而呈现显著的上升趋势;在季节变化上,冬季平均气温在1986年发生突变,增温显著;夏季降水量和夏季暴雨频率均在1992年发生突变增加,暴雨频率增加是夏季降水量增加的主要原因;蒸发皿蒸发量和参照蒸散量均呈现显著下降趋势,该变化在夏季尤为明显.上述变化趋势均以1990s最为显著,这与长江流域气候变化趋势基本一致.在空间分布上,饶河水系、信江水系和赣江下游等气候变化更为显著.笔者认为,鄱阳湖流域气候变化在长江流域中比较突出.该流域1990s暖湿气候在加强;气温的升高、降水量和暴雨频率的增加以及蒸发量的下降强化了五河流量的增加趋势,由此可大致判定鄱阳湖流域气候变化与洪涝灾害之间可能存在的关系,这可为理解气候变化在该流域的响应和预测该流域未来可能的洪涝灾害提供依据.  相似文献   

5.
孙鹏  张强  涂新军  江涛 《湖泊科学》2015,27(6):1177-1186
基于气象和水文干旱的二维变量干旱状态基础上,通过一阶马尔科夫链模型对二维变量干旱状态进行频率、重现期和历时分析,建立水文气象干旱指数,从干旱灾害形成、演变和持续3方面对干旱灾害进行研究,同时预测未来6个月非水文干旱到水文干旱的概率.结果表明:(1)修河流域在干旱形成中危害大,抚河流域和修河流域在干旱演变中危害大,赣江流域和饶河流域在干旱持续中危害大;(2)鄱阳湖流域状态4(气象、水文干旱)发生的频率最高,为0.30,连续湿润或者干旱的概率最大,湿润状态(状态2)与水文干旱(状态4、状态5(气象湿润、水文干旱))的相互转移概率最低;(3)在长期干旱预测中,鄱阳湖流域从状态2转到状态4和状态5的平均概率为0.11,属最低,而状态1(气象、水文无旱)和状态3(气象干旱、水文湿润)到达状态4的概率为0.23,发生概率最大.修河流域在非水文干旱状态下未来发生气象、水文干旱状态的平均概率为0.28,是"五河"中最高的,而赣江流域在正常或者湿润状态下未来发生气象、水文干旱的概率最低,为0.18,该研究对于鄱阳湖流域水文气象干旱的抗旱减灾具有重要理论与现实意义.  相似文献   

6.
欧亚大陆植被生态系统的时空分布特征及未来如何变化是"一带一路"倡议推进过程中亟需研究的关键生态环境问题之一.在对HLZ生态系统模型进行修正、拓展和完善的基础上,结合欧亚大陆气候观测数据(1981~2010年)和CMIP5 RCP26、RCP45和RCP85三种情景数据,实现欧亚大陆植被生态系统潜在分布变化特征及未来情景的模拟,并采用生态系统类型多样性模型和生态系统斑块连通性模型,定量揭示欧亚大陆HLZ生态系统类型多样性的变化情景.模拟结果显示,寒温带潮湿森林、冷温带湿润森林和荒漠是欧亚大陆最主要的植被生态系统类型,占整个欧亚大陆总面积的36.71%;三种情景下,极地/冰原面积减少最多,平均每10年减少26.75×106km~2,亚极地/高山湿润苔原减少最快,平均每10年减少10.49%;其中, RCP85情景下的欧亚大陆植被生态系统的变化速度快于其他两种情景,亚极地/高山湿润苔原减少最快,平均每10年减少10.88%.欧亚大陆HLZ生态系统类型多样性整体呈减少趋势,其中RCP26、RCP45和RCP85三种情景的HLZ生态系统类型多样性在2010~2100年间,平均每10年将分别减少0.09%、0.13%和0.16%;植被生态系统斑块连通性在三种情景下均呈现先增加后减少的趋势;"一带一路"沿线的中国区、蒙俄区、西亚区、中亚区、南亚区、东南亚区和欧洲区的HLZ生态系统时空分布及其变化差异特征显著.  相似文献   

7.
鄱阳湖流域干旱气候特征研究   总被引:2,自引:1,他引:1  
闵屾  严蜜  刘健 《湖泊科学》2013,25(1):65-72
本文利用鄱阳湖流域127个站点1960-2007年逐日降水和温度资料,选用Z指数对鄱阳湖流域的气象干旱进行分析,并将干旱分为偏旱、大旱和特旱三个等级.研究结果表明鄱阳湖流域干旱基本呈现出南少北多、南强北弱的空间分布形式.鄱阳湖流域7-12月发生的干旱以偏旱为主,大旱和特旱主要出现在1-6月.线性趋势变化分析表明,2000年以来干旱范围和干旱强度均呈现出增加的趋势,其中,2003、2004和2007年的干旱较为严重.2003年大部分月份偏旱范围广、强度大,全年大旱和特旱出现的范围均较小,但3-4月和6-7月的大旱和特旱强度较大;2004年大部分月份偏旱范围和强度均相对较小,但在3月和6月出现范围较大且强度较强的大旱和特旱;2007年干旱分布更为极端,仅在7、10和11月出现范围较广或强度较大的偏旱,而在5月集中出现面积超过80%的大旱和特旱.  相似文献   

8.
鄱阳湖流域过去1000 a径流模拟以及对气候变化响应研究   总被引:1,自引:1,他引:0  
张小琳  李云良  于革  张奇 《湖泊科学》2016,28(4):887-898
为研究过去千年尺度径流变化及其对气候变化的响应,以长江中游鄱阳湖流域为研究区,运用气候模式CCSM4和ECHAM5模拟过去1000 a气候数据,空间降尺度后驱动水文模型模拟了鄱阳湖流域过去近千年流域径流序列.利用快速傅里叶变换、小波分析等手段,分析流域极端径流变化特征、周期和该流域旱涝事件发生频率.结果表明:2种气候模式均能反映出中世纪暖期及小冰期阶段的干湿交替变化,且小冰期内中干旱状态维持时间较长;径流的丰枯变化与降水量变化具有较好的对应关系.CCSM4和ECHAM5模式下发生旱涝灾害与极大极小降水事件发生频率基本相同,径流丰枯变化与降水变化周期相近,均具有30 a左右的主周期,10~15、7 a左右的子周期.小波系数模平方图中30 a左右显著的能量信号揭示了该周期与北太平洋气候的主要环流机制的太平洋年代际振荡周期相近,因此,大气环流涛动是造成气候-水文变化的主要原因.研究结果拓展了基于近代60 a观测记录的流域水文变化的认识,探讨了千年时间长度下流域干湿变化特征和水文对气候响应的动力机制,有助于全面系统认识长江中游在全球气候暖化背景下旱涝极端水文事件的发生机制与变化规律.  相似文献   

9.
本文利用Hadley气候预测与研究中心的区域气候模式系统PRECIS进行中国区域气候基准时段(1961~1990年)和SRES B2情景下2071~2100年(2080s)最高、最低气温及日较差变化响应的分析.气候基准时段的模拟结果与观测资料的对比分析表明:PRECIS具有对中国区域最高、最低气温及日较差的模拟能力,能够模拟出中国区域最高、最低气温及日较差的局地分布特征.对SRES B2情景下相对于气候基准时段的最高、最低气温及日较差变化响应分析表明:中国区域2080s时段年、冬季和夏季平均最高、最低气温变化均呈一致增加的趋势,北方地区增温幅度普遍大于南方地区.夏季东北地区极端高温事件发生的频率将会增加,而冬季华北地区极端冷害事件发生频率将会减少.未来中国区域年平均日较差将出现北方地区减小而南方地区增加的趋势.冬季长江中下游以南地区日较差呈增加趋势,而夏季华东地区、西北地区及内蒙古中部日较差将呈减小趋势,其中在青藏高原北部地区存在一个较强的低值中心.  相似文献   

10.
基于鄱阳湖流域五河水文站1960-2013年逐日径流量和14个国家级气象站的日气象数据,本文利用长短记忆模型框架构建神经网络模型来开展鄱阳湖流域的径流过程模拟,结合生态赤字与生态盈余等生态径流指标,定量分析了鄱阳湖流域的水文变异特征.同时,利用差异化的情景模拟方式,定量区分了人类活动和气候变化对鄱阳湖流域生态径流变化的...  相似文献   

11.
Abstract

To explore the spatial and temporal variations of the reference evapotranspiration (ETref) is helpful to understand the response of hydrological processes to climate changes. In this study, ETref was calculated by the Penman-Monteith method (P-M method) using air temperature, wind speed, relative humidity and sunshine hours at 89 meteorological stations during 1961–2006 in the Yellow River Basin (YRB), China. The spatial distribution and temporal variations of ETref were explored by means of the kriging method, the Mann-Kendall (M-K) method and the linear regression model, and the causes for the variations discussed. The contribution of main meteorological variables to the variations of ETref was explored. From the results we found that: (1) the spatial distributions of ETref display seasonal variation, with similar spatial patterns in spring, summer and autumn; (2) temporal trends for ETref showed large variation in the upper, middle and lower regions of the basin, most of the significant trends (P?=?0.05) were detected in the middle and lower regions, and, in particular, the upward and downward trends were mainly detected in the middle region and lower region of the basin, respectively; and (3) sensitivity analysis identified the most sensitive variable for ETref as relative humidity, followed by air temperature, sunshine hours and wind speed at the basin scale.

Citation Yang, Zhifeng, Liu, Qiang & Cui, Baoshan (2011) Spatial distribution and temporal variation of reference evapotranspiration during 1961–2006 in the Yellow River Basin, China. Hydrol. Sci. J. 56(6), 1015–1026.  相似文献   

12.
The temporal trends of reference evapotranspiration (ETref) reflect the combined effects of radiometric and aerodynamic variables, such as global solar radiation (Rs), wind speed, relative humidity and air temperature. The temporal trends of annual ETref during 1961–2006 calculated by Penman‐Monteith method were explored and the underlying causes for these trends were analysed in the Yellow River Basin (YRB). The contributions of key meteorological variables to the temporal trend of ETref were detected using the detrended method and then sensitivity coefficients of ETref to meteorological variables were determined. For ETref, positive trends in the upper, middle and whole of YRB, and significant negative trend (P = 0·05) in the lower basin were obtained by the linear fitted model. Significant increasing trend (P = 0·05) in air temperature and decreasing trend in relative humidity were the main causes for the increasing trends of ETref in the upper, middle and whole basins. For the whole basin, the increasing trend of ETref was mainly caused by the significant increase (P = 0·05) in air temperature and to a lesser extent by a decrease in the relative humidity, decreasing trends of Rs and wind speed reduced ETref. The spatial distribution of sensitivity coefficients addressed that the sensitive regions for ETref response to the changes of the four meteorological variables are different in the YRB. The sensitive region lay in the upper basin for Rs, the northwest portion of the middle basin for wind speed, the south portion of YRB for relative humidity and the west portion of the upper basin and the north portion of the middle basin for air temperature. In general, Rs was the most sensitive variable for ETref, followed by relative humidity, air temperature and wind speed in the basin scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Drought/wetness conditions are fundamental not only for agricultural production but also ecology, human health, and economic activity. Dryness/wetness is a function of precipitation, temperature, vegetation and potential evapotranspiration. Regions with low moisture are often characterized by aridity which, in turn, reflects the degree of meteorological drought. Observed climatic data from eleven meteorological stations in and around Shiyang River basin, China, were used to calculate the aridity index (AI) which was defined as the ratio of potential evapotranspiration (ET0) to precipitation (P). ET0 was calculated using the Penman–Monteith method. The ordinary kriging method was used to interpolate the spatial variability of ET0, P and AI. The Mann–Kendall test with a pre-whitening method was employed using the Yue and Wang autocorrelation correction to detect temporal trends. The Theil–Sen estimator was used to estimate the slopes of trend lines. Results showed a higher AI in the north basin and a lower AI in the Qilian Mountain region. Annual ET0 and P had increasing trends with a slope of 0.672 and 0.459 mm per year, respectively, but trends were not statistically significant for most stations. While annual AI had a slight decreasing trend with a slope of ?0.01 per year, the trend was not statistically significant for all stations. The decreasing trends in winter AI (at a rate of ?0.313/a) was more significant than that in other seasons. The study indicates that the Shiyang River basin is getting slightly wetter, especially in winter.  相似文献   

14.
Projections of changes in climate are important in assessing the potential impacts of climate change on natural and social systems. However, current knowledge on assembling different GCMs to estimate future climate change over the Pear River basin is still limited so far. This study examined the capability of BMA and arithmetic mean (AM) method in assembling precipitation and temperature from CMIP5 under RCP2.6, RCP4.5 and RCP8.5 scenarios over the Pearl River basin. Results show that the BMA outperforms the traditional AM method. Precipitation tends to increase over the basin under RCP2.6 and RCP4.5 scenarios, whereas decrease under RCP8.5. The most remarkable increase of precipitation is found in the northern region under RCP2.6 scenario. The linear trend of the monthly mean near-surface air temperature increases with the growing CO2 concentration. The warming trends in four seasons are distinct. The warming rate is prominent in summer and spring than that in other season, meanwhile it is larger in western region than in other parts of the basin. The findings can provide beneficial reference to water resources and agriculture management strategies, as well as the adaptation and mitigation strategies for floods and droughts under the context of global climate change.  相似文献   

15.
Future changes in reference evapotranspiration (ET0) are of increasing importance in assessing the potential impacts on hydrology and water resources systems of more pronounced climate change. This study assesses the applicability of the Statistical Downscaling Model (SDSM) in projecting ET0, and investigates the seasonal and spatial patterns of future ET0 based on general circulation models (GCMs) across the Haihe River Basin. The results indicate that SDSM can downscale ET0 well in term of different basin-averaged measures for the HadCM3 and CGCM3 GCMs. HadCM3 has a much superior capability in capturing inter-annual variability compared to CGCM3 and thus is chosen as the sole model to assess the changes in future ET0. There are three homogeneous sub-regions of the Haihe River Basin: Northwest, Northeast and Southeast. Change points are detected at around 2050 and 2080 under the A2 and B2 scenarios, respectively. The Northwest is revealed to have a slight to strong increase in ET0, while the Northeast and the Southeast tend to experience a pattern change from decrease to increase in ET0.
EDITOR M.C. Acreman

ASSOCIATE EDITOR J. Thompson  相似文献   

16.
Strategic planning of optimal water use requires an accurate assessment of actual evapotranspiration (ETa) to understand the environmental and hydrological processes of the world's largest contiguous irrigation networks, including the Indus Basin Irrigation System (IBIS) in Pakistan. The Surface Energy Balance System (SEBS) has been used successfully for accurate estimations of ETa in different river basins throughout the world. In this study, we examined the application of SEBS using publically available remote sensing data to assess spatial variations in water consumption and to map water stress from daily to annual scales in the IBIS. Ground‐based ETa was calculated by the advection‐aridity method, from nine meteorological sites, and used to evaluate the intra‐annual seasonality in the hydrological year 2009–2010. In comparison with the advection‐aridity, SEBS computed daily ETa was slightly underestimated with a bias of ?0.15 mm day?1 during the kharif (wet; April–September) season, and it was overestimated with a bias of 0.23 mm day?1 in the rabi (dry; October–March) season. Monthly values of the ETa estimated by SEBS were significantly (P < 0.05) controlled by mean air temperature and rainfall, among other climatological variables (relative humidity, sunshine hours and wind speed). Because of the seasonal (kharif and rabi) differences in the water and energy budget in the huge canal command areas of the IBIS, ETa and rainfall were positively correlated in the kharif season and were negatively correlated during the rabi season. In addition, analysis of the evaporation process showed that mixed‐cropping and rice–wheat dominated areas had lower and higher water consumption rates, respectively, in comparison with other cropping systems in the basin. Basin areas under water stress were identified by means of spatial variations in the relative evapotranspiration, which had an average value of 0.59 and 0.42 during the kharif and the rabi seasons, respectively. The hydrological parameters used in this study provide useful information for understanding hydrological processes at different spatial and temporal scales. Results of this study further suggest that the SEBS is useful for evaluation of water resources in semi‐arid to arid regions over longer periods, if the data inputs are carefully handled. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT

Uncertainty in climate change impacts on river discharge in the Upper Awash Basin, Ethiopia, is assessed using five MIKE SHE hydrological models, six CMIP5 general circulation models (GCMs) and two representative concentration pathways (RCP) scenarios for the period 2071–2100. Hydrological models vary in their spatial distribution and process representations of unsaturated and saturated zones. Very good performance is achieved for 1975–1999 (NSE: 0.65–0.8; r: 0.79–0.93). GCM-related uncertainty dominates variability in projections of high and mean discharges (mean: –34% to +55% for RCP4.5, – 2% to +195% for RCP8.5). Although GCMs dominate uncertainty in projected low flows, inter-hydrological model uncertainty is considerable (RCP4.5: –60% to +228%, RCP8.5: –86% to +337%). Analysis of variance uncertainty attribution reveals that GCM-related uncertainty occupies, on average, 68% of total uncertainty for median and high flows and hydrological models no more than 1%. For low flows, hydrological model uncertainty occupies, on average, 18% of total uncertainty; GCM-related uncertainty remains substantial (average: 28%).  相似文献   

18.
曾冰茹  李云良  谭志强 《湖泊科学》2023,35(5):1796-1807
由于气候变化和人类活动等多重影响,流域河湖水系格局与连通程度发生了显著变化,进而引发洪涝灾害等一系列水资源问题。本文以鄱阳湖流域为研究区,基于Google Earth Engine(GEE)提取1989—2020年5期水系数据,采用图论方法构建水系评价体系,定量分析该地区近30年来水系格局和结构连通性的时空演变特征,并结合该时期地形、土地利用和归一化植被指数(NDVI)等数据,利用连通性指数(index of connectivity,IC)评估功能连通性的动态变化,进而探讨水文连通与径流量和输沙量的联系。结果表明,近30年来鄱阳湖流域水系结构趋于复杂化,主要体现在流域北部。除干流外,其他等级河流的数量和长度均有所增加,其中Ⅲ级河流最为明显。河网密度、水面率、河网复杂度和发育系数均呈增加趋势,2000年后的变化率约为2000年前的两倍。水系连通环度、节点连接率和水系连通度总体增加,结构连通性呈好转趋势且变化幅度较小。功能连通分析表明,近30年来大部分流域IC减少,流域下游靠近主河道的平坦地区IC较高,上游远离河道的植被密集区域IC较低。此外,IC与年径流量和输沙量表现为显著的正相关性(...  相似文献   

19.
West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986–2005) and future climates (2046–2065 and 2081–2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1–2, 2–4, 4–8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1–3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046–2065) to 2.4 (2081–2100) month year?1 while under RCP8.5, the change ranges from 2.2 (2046–2065) to 3.0 month year?1 (2081–2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号