首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
采用水沙模型对流域水沙过程进行计算是目前分析和研究黄土地区水土流失、水沙锐减等问题的有效途径由于降雨的时段均化和缺测、漏测、误测等问题,导致水沙模型的重要输入项和动力因子——降雨资料存在误差,进而影响水流和泥沙过程模拟精度因此,本研究将降雨动态系统响应曲线的误差修正方法与概念性水沙模拟模型相结合以提高水沙过程模拟精度此方法将水沙模型的水流模拟部分看作响应系统,通过修正水沙模型的重要输入项——面平均雨量,利用修正之后的面平均雨量系列,通过模型重新计算以提高模型对产汇流和产汇沙过程的模拟精度通过理想案例验证该方法可行性后,选择黄土地区曹坪流域进行检验,结果表明修正后的水流和泥沙过程模拟精度均有显著提高,平均提高幅度分别为17.56%和15.86%.  相似文献   

2.
基于改进型SIMTOP参数化径流方案和新安江模型的三层土壤水量平衡计算方法,本文构建了一个输入数据和率定参数较少、同时具有地形指数尺度转换机制、较好描述二维水文过程的简单高效的大尺度水文模型TOPX,并将其与区域环境系统集成模式RIEMS紧密耦合,以增强区域气候模式对大尺度流域径流量的定量数值模拟能力.TOPX模型在酉水河流域和泾河流域的离线测试表明:该模型对小尺度流域的径流量模拟精度较高,能够较好地描述流域水文变化过程;同时,该模型在大尺度上具有较强的分布式模拟能力,能够捕捉陆面水文过程的主要特征和时空演变特点.TOPX与RIEMS的耦合模式在泾河流域进行了在线测试,借助TOPX模型中的地形指数降尺度转换和水文过程产汇流机制,耦合模式实现了利用区域气候模式模拟的气象资料来驱动水文模型进行大尺度流域日径流量的模拟.进一步分析还表明:区域气候模式RIEMS模拟的降水时空分布数据的精度是影响耦合模式对径流量模拟效果的关键因素.  相似文献   

3.
黄河中游多沙粗沙区的风水两相侵蚀产沙过程   总被引:32,自引:6,他引:26  
许炯心 《中国科学D辑》2000,30(5):540-548
以黄河中游各支流的资料为基础,提出了风水两相侵蚀产沙的概念,并建立了风水两相侵蚀产沙模式,从而为这一地区强烈的侵蚀产沙过程提出了新的解释.风力作用与水力作用在时间上是相异的,前者为高含沙水流搬运作用准备了大量粗颗粒泥沙,存贮在坡面、沟道和河道中;后者则形成了富含细颗粒的暴雨径流,为粗颗粒泥沙的搬运提供了动力条件.由此形成了高含沙水流,导致了这一地区高强度的侵蚀产沙过程.  相似文献   

4.
流域因素与人类活动对黄河下游河道输沙功能的影响   总被引:6,自引:0,他引:6  
许炯心 《中国科学D辑》2004,34(8):775-781
从泥沙收支平衡的概念出发定义了河道的输沙功能, 提出了河道输沙功能的定量指标, 研究了流域自然因子和人类活动对黄河下游河道输沙功能的影响. 这种影响可以用不同水沙来源区的降水量、进入黄河下游的大于0.05 mm粗泥沙占来沙量百分比、黄河上游水库对汛期清水基流的调节程度(以兰州站汛期径流量占全年百分比表示)、高含沙水流频率、流域内水土保持措施实施面积等来定量表达. 运用多元回归分析方法, 建立了黄河下游河道输沙功能指标与上述7个因子之间的多元回归方程. 表明不同水沙来源区降水量的减少对下游河道输沙功能的影响是不同的. 河口镇以上清水区和龙门至三门峡之间年降水量减少, 将导致下游河道输沙功能指标降低; 河口镇至龙门间降水减少, 将导致下游河道输沙功能指标增高. 来沙的组成强烈地影响下游河道输沙功能指标, 进入黄河下游的大于0.05 mm粗泥沙占来沙量百分比越大, 则河道输沙功能指标越低. 因此, 小浪底水库拦截粗泥沙、排出细泥沙, 将有利于提高下游河道输沙功能指标. 兰州站汛期径流量占全年百分比越低, 下游河道输沙功能指标越低, 说明黄河上游水库大量拦截汛期清水基流, 是下游河道输沙功能降低的原因之一.  相似文献   

5.
长时间序列水沙数据分析有助于科学评价流域尺度水土保持减流减沙效应,为科学开展区域水土保持成效评估提供实现路径.本文选取南方红壤区水土保持工程最为集中、持续时间最长的典型流域——平江流域,基于1975-2014年的逐日降水量、流量、含沙量数据,综合应用预置白M-K检验法、Theil-Sen趋势度估计法、Pettitt检验法与累积量斜率变化率比较法,开展河流水沙变化特征及归因分析,揭示长期水土流失治理对河流水沙的影响.结果表明:(1)1975-2014年平江年输沙量、汛期输沙量和非汛期输沙量均存在显著减少趋势,年均减少率分别为2.38×104、1.75×104和0.44×104t/a,汛期输沙量在流域开始实施系统水土流失治理时即发生突变,而年输沙量和非汛期输沙量在系列国家水土保持重点工程实施一段时间后方开始突变;(2)流域长期水土保持显著减少平江输沙,但对径流无显著影响,重点治理期、治理后期以水土保持为主的生态保护工程对输沙量减少的贡献均在94.0%以上,且生态保护工程对汛期输沙量减少的贡献较非汛期的更为突出;(3)以水土保持为主的长期生态保护工程导致平江全年、汛期、非汛期输沙量分别减少59.3%、60.7%和55.7%;(4)在剔除大型水利工程(尤其是大中型水库)建设影响后,南方红壤区可以基于长时间序列水沙数据分析科学评价流域尺度水土保持减流减沙效应.研究结果可以为南方红壤区流域尺度水土保持减流减沙效应评价提供参考,并有望为区域系列国家生态保护与建设工程的布局和管理提供科学依据.  相似文献   

6.
陈远芳  高凯春 《湖泊科学》1997,9(4):317-324
在已建水库下游河床冲刷泥沙数学模型的基础上针对宜昌-沙市河段的河道特性,修改并建立了能够反映该河段水沙运动特性的一维水流泥沙数学模型,在此基础上,进行了三峡建库后,前20年内宜昌-沙市河段的一维水沙运动及河床冲淤计算。  相似文献   

7.
强烈下渗条件下天然河道洪水演进模拟方法   总被引:2,自引:0,他引:2  
河道洪水演进模拟是河道洪水预报与汇流计算的主要内容和关键.对于常年断流、河水与地下水长期处于脱节状态的河道,一旦行洪下渗非常强烈,渗漏量很大.不考虑河道下渗洪水演进模拟模型,无法准确模拟真实的洪水运动行为,不能用于洪水模拟预报.本文采用土壤下渗理论描述河道下渗,推导出了河道下渗流量计算公式,建立了基于霍顿下渗公式的河道下渗模拟方法;并把下渗当做单位区间出流,与基于马斯京根康吉法天然河道洪水演进模型进行耦合,构建了强烈下渗条件下天然河道洪水演进模拟模型.针对天然河道水力特性复杂特点,研究了洪水演进模型参数确定方法和波速计算方法.海河流域漳卫河水系岳城水库-蔡小庄段的典型场次洪水应用结果表明,模型能很好反映强烈下渗条件下洪水演进实际情况,具有很高模拟精度,基于土壤下渗理论的下渗量计算公式和模拟方法可以很好地模拟河道下渗过程.这一模型具有计算简便、参数确定简单、适合于洪水预报等特点,在干旱和半干旱地区河道洪水演进模拟预报与河道汇流计算中也具有一定的推广应用价值.  相似文献   

8.
水流挟沙力是反映河床处于冲淤平衡状态下水流挟带泥沙能力的综台性指标。作者通过对众多挟沙力公式的分析比较,基于量纲和谐的考虑,建立了新的挟沙力公式形式。本文以长江口的泥沙输运为例,利用长江口泥沙实测资料,研究了新建立的挟沙力公式在长江口的适用性。计算结果表明,本文作者建立的公式在长江口具有一定的适用性,与刘家驹公式相比较,计算精度差不多,计算结果尚令人满意,但还存在一定的误差,说明将本文建立的挟沙力公式进行率定后,可以将其推广到近岸河口海域,为工程实践提供有益的参考价值。  相似文献   

9.
栅格新安江模型在天津于桥水库流域上游的应用   总被引:3,自引:1,他引:2  
栅格新安江模型是在概念性新安江模型的理论基础上,以栅格为计算单元,结合地形地貌和下垫面特性构建出来的水文模型.在于桥水库流域上游的水平口流域应用栅格新安江模型,研究该地区洪水要素的空间变化以及洪水形成过程,讨论洪水模拟效果来验证模型在半湿润地区的适用性.选取水平口流域1978-2012年的洪水进行模型计算,模拟结果较好地反映了流域产流面积的时空变化,且均达到乙级以上精度.初步表明栅格新安江模型在半湿润地区有较好的适用性.  相似文献   

10.
沈丹丹  包为民  江鹏  张阳  费如君 《湖泊科学》2017,29(6):1510-1519
本文旨在将实时监测得到的土壤墒情转化为流域水文模型可以直接使用的土壤含水量,论证将实时土壤墒情资料用于实时预报的可行性;利用实时监测土壤墒情,改进传统的模型结构,设计基于实测土壤墒情的降雨径流水文预报模型.采用土壤含水量误差抗差估计技术以抵御观测资料粗差的影响,提高系统的稳定性;并在此基础上提出了土壤含水量系统响应修正方法,以提高模型计算精度.将该模型应用于实验流域——宝盖洞流域进行应用检验,洪水模拟合格率达到92.3%,整体模拟精度达到甲级.  相似文献   

11.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

12.
Soil detachment by rill flow is a key process of rill erosion, modelling this process can help in understanding rill erosion mechanisms. However, many soil detachment models are established on conceptual assumptions rather than experimental data. The objectives of this study were to establish a model of soil detachment by rill flow based on flume experimental data and to quantitatively verify the model. We simulated the process of soil detachment by rill flow in flume experiments with a soil-feeding hopper using loessial soil on steep slopes. Seven flow discharges, six slopes and five sediment loads were combined. Soil detachment capacity, sediment transport capacity, and soil detachment rate by rill flow under different sediment loads were measured. The process of soil detachment by rill flow can be modelled by a dual power function based on soil detachment capacity and transport capacity deficit as variables. The established model exhibited high credibility (NSE=0.97; R2=0.97). The contributions of soil detachment capacity and transport capacity deficit to soil detachment rate by rill flow reached 60% and 36%, respectively. Soil detachment capacity exerted more influence on soil detachment rate than did transport capacity deficit. The performance of the WEPP rill erosion equation is also favourable (NSE=0.95; R2=0.97). The two power exponents in the model we established strengthen the role of soil detachment capacity in soil detachment rate and weaken that for transport capacity deficit. Soil detachment capacity and transport capacity deficit played important roles in the determination of soil detachment rate by rill flow. The results can be applied to implement the numerical modeling and prediction of rill erosion processes on steep loessial hillslopes. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
The Three Gorges Project is one of the largest hydro-projects in the world and has drawn many debates inside China and abroad. The major concern is that sediment load from the river basin may eventually fail the functions of the project for flood control and power generation. To reduce sedimentation in the reservoir, watershed management has been adopted. However, there is limited information regarding the effectiveness of various control measures such as terracing and afforestation on a watershed scale. The Jialing River, a main tributary of the Yangtze River, contributes approximately 25% of the total sediment load in the main river but only represents 8% of the whole basin area. There have been various land use patterns and extensive human activities for thousands of years in the Jialing River watershed. Based on analysis of the major factors affecting erosion in the Jialing River watershed, the main watershed management strategies (afforestation, farming and engineering practice) are illustrated, and their effects on the reduction of sediment and runoff are studied in detail. The sediment budget of the watershed shows that 1/3 of the sediment yield is trapped by the erosion control measures (afforestation and farming) on the slope, 1/3 is trapped by the reservoirs, ponds and dams within the watershed, and only about 1/3 is transported into the Yangtze River, which will affect the Three Gorges Project.  相似文献   

14.
Hydrological models at a monthly time‐scale are important tools for hydrological analysis, such as in impact assessment of climate change and regional water resources planning. Traditionally, monthly models adopt a conceptual, lumped‐parameter approach and cannot account for spatial variations of basin characteristics and climatic inputs. A large requirement for data often severely limits the utility of physically based, distributed‐parameter models. Based on the variable‐source‐area concept, we considered basin topography and rainfall to be two major factors whose spatial variations play a dominant role in runoff generation and developed a monthly model that is able to account for their influences in the spatial and temporal dynamics of water balance. As a hybrid of the Xinanjiang model and TOPMODEL, the new model is constructed by innovatively making use of the highly acclaimed simulation techniques in the two existing models. A major contribution of this model development study is to adopt the technique of implicit representation of soil moisture characteristics in the Xinanjiang model and use the TOPMODEL concept to integrate terrain variations into runoff simulation. Specifically, the TOPMODEL topographic index ln(a/tanβ) is converted into an index of relative difficulty in runoff generation (IRDG) and then the cumulative frequency distribution of IRDG is used to substitute the parabolic curve, which represents the spatial variation of soil storage capacity in the Xinanjiang model. Digital elevation model data play a key role in the modelling procedures on a geographical information system platform, including basin segmentation, estimation of rainfall for each sub‐basin and computation of terrain characteristics. Other monthly data for model calibration and validation are rainfall, pan evaporation and runoff. The new model has only three parameters to be estimated, i.e. watershed‐average field capacity WM, pan coefficient η and runoff generation coefficient α. Sensitivity analysis demonstrates that runoff is least sensitive to WM and, therefore, it can be determined by a prior estimation based on the climate and soil properties of the study basin. The other two parameters can be determined using optimization methods. Model testing was carried out in a number of nested sub‐basins of two watersheds (Yuanjiang River and Dongjiang River) in the humid region in central and southern China. Simulation results show that the model is capable of describing spatial and temporal variations of water balance components, including soil moisture content, evapotranspiration and runoff, over the watershed. With a minimal requirement for input data and parameterization, this terrain‐based distributed model is a valuable contribution to the ever‐advancing technology of hydrological modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Modeling of state of vegetation and soil erosion over large areas   总被引:14,自引:7,他引:7  
A vegetation-erosion model was developed to assess the extent of soil erosion and development trend of vegetation in the context of existing and contemplated vegetation-based soil erosion controls under different climatic, topographical and soil conditions. The model recognizes four vegetation-mediated soil erosion states: (i) an expanding vegetation coverage coupled with reduced erosion (C), (ii) a deteriorating vegetation coverage coupled with increased erosion (A), (iii) two transitional states between A and C, one with increasing erosion and vegetation coverage (B) and the other with decreasing erosion and vegetation coverage (D). With the model, the vegetation-erosion state of any particular area can be quantitatively described, by way of a vegetation-erosion chart, for varying climate, soil and topographic conditions, as demonstrated for the Xishan region, the East River basin, the Wangjiagou and Anjiagou watersheds (Loess Plateau), and the Xiaojiang watersheds (hot and dry valleys in the upper Yangtze River basin) in China. This paper presents the principles and results of area-specific investigations that track the fractions of the areas covered by vegetation and experiencing soil erosion (with soil loss determined in t/km^2yr). This is done within the context of local soil erosion control initiatives via re-vegetation efforts, or the lack thereof, over the course of 30 years. The effectiveness of reforestation and erosion-control measures vary under different climatic, topographical and soil conditions. The vegetation may be quickly restored in the hot and wet East River basin but is very difficult on the dry and cold Loess Plateau. In the hot and dry valleys the vegetation can be restored if erosion is controlled and intensive reforestations for small watersheds are performed.  相似文献   

16.
Check dam has become an efficient measure to control sediment transport and soil erosion in the gully areas. It plays an important role in soil erosion control and agricultural production in the Loess Plateau. Due to construction of numerous check dams, it is necessary to assess the impact of check dams on runoff and sediment load at basin scale. This study applied the SWAT model to simulate monthly runoff and sediment load in the Huangfuchuan basin in the middle reaches of the Yellow River. Twenty key check dams are coupled to the SWAT model simulation in the calibration (1978–1984) and validation period (1985–1989). The determination coefficient (R 2) and the Nash–Sutcliffe coefficient (NS) were 0.94 and 0.83 for runoff, and 0.82 and 0.81 for sediment load in the calibration period, respectively. During the validation period, the R 2 and NS were 0.93 and 0.80 for runoff, and 0.90 and 0.83 for sediment load respectively. The results showed that the model simulation was acceptable. Subsequently, the calibrated model was used to examine the effect of check dams on runoff and sediment load between 1990 and 2012. It showed that the increasing check dams contributed 24.8 and 27.7% to the decrease of annual runoff and sediment load during the period of 1990–1999, whereas it reached up to 65.2% for runoff decline and 78.3% for sediment load reduction within 2000–2012. Overall, this study illustrated a case study of the dominant role of check dams on variation of runoff and sediment load in the Huangfuchuan basin.  相似文献   

17.
Based on the measuring data and Digital Elevation Data (DEM) in a typical watershed--Hemingguan Watershed, Nanbu County, Sichuan Province of China, a GIS-based distributed soil erosion model was developed particularly for the purple soil type. It takes 20 m × 20 m grid as calculating unit and operates at 10-minute time interval. The required input data to the model include DEM, soil, land use, and time-series of precipitation and evaporation loss. The model enables one to estimate runoff, erosion and sediment yield for each grid cell and route the flow along its flow path to the watershed outlet. Furthermore, the model is capable of calculating the total runoff; erosion and sediment yield for the entire watershed by recursion algorithm. The validation of the model demonstrated that it could quantitatively simulate the spatial distribution of hydrological variables in a watershed, such as runoff, vegetation entrapment, soil erosion, the degree of soil and water loss. Moreover, it can evaluate the effect of land use change on the runoff generation and soil erosion with an accuracy of 80% and 75% respectively. The application of this model to a neighboring watershed with similar conditions indicates that this distributed model could be extended to other similar regions in China.  相似文献   

18.
M. E. Grismer 《水文研究》2014,28(2):161-170
Establishment and ‘crediting’ for total maximum daily loads (TMDL) of sediment require development of stream monitoring programs capable of detecting changes in land use and erosion ‘connectivity’ conditions across the watershed. As a ‘proof of concept’ directed at developing such an effective stream monitoring program considering only the effects of soil disturbances or restoration in the Lake Tahoe Basin, variability in daily stream sediment load predictions from a local‐scale, field data–based distributed runoff and erosion model developed previously is analysed for the west‐shore watersheds of Homewood (HMR) and Madden Creeks. The areal extent effects of forest fuel reductions (slight soil disturbances in Madden) and soil restoration efforts (e.g. dirt road removal and ski‐run rehabilitation in HMR) on watershed daily sediment loads for the 1994–2005 period are considered. Based on model predictions, forest fuel management in the Madden Creek watershed must occur across more than 30% of the basin area to result in a detectable increase in daily sediment loads at the >95% confidence level. Similarly, a daily load reduction that could be assessed with >95% confidence within the HMR basin required substantial dirt road removal (50% by roaded area) and restoration of 20% of the ski‐run area (combined for ~5% of the basin area) for the 11‐year record but was also possible within 2–3 years following restoration. These modelling results suggest that despite considerable flow–load variability, it may be possible to detect cumulative changing land‐use conditions within several years of project completion such that quantitative TMDL ‘crediting’ may be developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
For sake of improving our current understanding on soil erosion processes in the hilly–gully loess regions of the middle Yellow River basin in China, a digital elevation model (DEM)-based runoff and sediment processes simulating model was developed. Infiltration excess runoff theory was used to describe the runoff generation process while a kinematic wave equation was solved using the finite-difference technique to simulate concentration processes on hillslopes. The soil erosion processes were modelled using the particular characteristics of loess slope, gully slope, and groove to characterize the unique features of steep hillslopes and a large variety of gullies based on a number of experiments. The constructed model was calibrated and verified in the Chabagou catchment, located in the middle Yellow River of China and dominated by an extreme soil-erosion rate. Moreover, spatio-temporal characterization of the soil erosion processes in small catchments and in-depth analysis between discharge and sediment concentration for the hyper-concentrated flows were addressed in detail. Thereafter, the calibrated model was applied to the Xingzihe catchment, which is dominated by similar soil erosion processes in the Yellow River basin. Results indicate that the model is capable of simulating runoff and soil erosion processes in such hilly–gully loess regions. The developed model are expected to contribute to further understanding of runoff generation and soil erosion processes in small catchments characterized by steep hillslopes, a large variety of gullies, and hyper-concentrated flow, and will be beneficial to water and soil conservation planning and management for catchments dealing with serious water and soil loss in the Loess Plateau.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号