首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
The eastern margin of Tibetan Plateau is one of the most active zones of tectonic deformation and seismicity in China. To monitor strain buildup and benefit seismic risk assessment, we constructed 14 survey-mode global position system(GPS) stations throughout the northwest of Longmenshan fault. A new GPS field over 1999–2011 is derived from measurements of the newly built and pre-existing stations in this region. Sequentially,two strain rate fields, one preceding and the other following the 2008 MW7.9 Wenchuan earthquake, are obtained using the Gausian weighting approach. Strain field over1999–2007 shows distinct strain partitioning prior to the2008 MW7.9 Wenchuan earthquake, with compression spreading over around Longmenshan area. Strain field derived from the two measurements in 2009 and 2011 shows that the area around Longmenshan continues to be under striking compression, as the pattern preceding the Wenchuan earthquake, implying a causative factor of the sequent of 2013 MW6.7 Lushan earthquake. Our GPSderived dilatation shows that both the Wenchuan and Lushan earthquakes occurred within the domain of pronounced contraction. The GPS velocities demonstrate that the Longriba fault underwent slight motion with the faultnormal and-parallel rates at 1.0 ± 2.5 mm and 0.3 ± 2.2 mm/a; the Longmenshan fault displayed slow activity, with a fault-normal rate at 0.8 ± 2.5 mm/a, and a fault-parallel rate at 1.8 ± 1.7 mm/a. Longriba fault is on a par with Longmenshan fault in strain partitioning to accommodate the southeastward motion of eastern margin of the Tibetan Plateau. Integrated analysis of principal strain tensors, mean principal stress, and fast directions of mantle anisotropy shows that west of Sichuan is characterized as mechanically strong crust-mantle coupling.  相似文献   

2.
Through numerical simulation for GPS data, aseism/c negative dislocation model for crustal horizontal movement during 1999-2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial distri-bution of apparent strain field in this area, the characteristics of motion and deformation of active blocks and their boundary faults, together with the place and intensity of strain accumulation are analyzed. It is shown that: a) 9 active blocks appeared totally clockwise motion from eastward by north to eastward by south. Obvious sinistral strike-slip and NE-NEE relative compressive motion between the blocks separated by Qilianshan-Haiyuan fault zone was discovered; b) 20 fault segments (most of them showed compression) locked the relative motion between blocks to varying degrees, among the total, the mid-east segment of Qilianshan fault (containing the place where it meets Riyueshan-Lajishan fault) and the place where it meets Haiyuan fault and Zhuanglanghe fault, more favored accumulation of strain. Moreover, the region where Riyueshan-Lajishan fault meets north boundary of Qaidam block may have strain accumulation to some degree, c) Obtained magnitude of block velocities and locking of their boundaries were less than relevant results for observation in the period of 1993-1999.  相似文献   

3.
Based on high-precision data obtained in the past decade from GPS re-measurement in the North China Network, the Crustal Movement Observation Network of China (CMONOC) and GPS measurement along the Shanxi graben zone, the status and evolution of horizontal crustal movement in the North China region are analyzed. The results show that (1) the Yanshan tectonic zone (Zhangjiakou-Bohai Sea zone)is an active one with the largest horizontal strain in the North China region; The largest tendency differential movement of adjacent blocks is seen between the Yanshan block and the North China plain block; about 2mm/a (left lateral) ; (2)The significant horizontal differential movement along the boundaries of the North China region is characterized by right-lateral strike-slip movement at the middle-north segment on its west boundary (composed of Yinchuan and other active tectonic zones) and compressive movement at the south segment; while the Yinshan rift zone located along the west segment on its north boundary is dominated by tensile movement. Other boundaries and zones have no obvious differential movement; (3) On the whole, measurements of each period differ from one another, which might result from the nonlinear movement component as well as from the error effect. In the paper, results of the relative movement and strain in different periods are given for different blocks and boundary zones.  相似文献   

4.
A continuous GPS array across the southern segment of the Longmenshan fault zone recorded the deformation during the process of the Lushan MS7.0 earthquake that occurred on April 20, 2013. Such data can provide meaningful information regarding the dynamic evolution of crustal deformation in the seismogenic zone. Our studies have shown that the occurrence of the Wenchuan earthquake led to the loading of compressive and sinistral shearing strain on the southern segment of the Maoxian-Wenchuan fault, whereby the extrusion strain accumulated at a greater rate than before the Wenchuan earthquake. The strain time series in the seismogenic zone revealed that the principal compression strain rates decreased from west to east in the direction of N30°–45°W. Furthermore, the area to the east of Beichuan-Yingxiu fault behaved as a zone of compressive deformation with obvious sinistral shearing deformation. The surface strain and the first shearing strain time series decreased with time, while the area to the west of the Beichuan-Yingxiu fault behaved as a zone of dextral shear deformation that increased with time. Furthermore, the regional deformation field before the Lushan earthquake showed that the rate of extrusion strain accumulation in the southern segment of the Longmenshan fault zone was obviously larger than before the Wenchuan earthquake. Moreover, the sinistral shearing strain accumulated in the area of the southern segment of the Maoxian-Wenchuan fault. Based on the above analysis, we consider that the eastward movement of the Bayan Har block increased considerably following the Wenchuan earthquake, which enhanced the accumulation of compression strain in the southern segment of the Longmenshan fault zone.  相似文献   

5.
Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active fault zone newly-generated in late Quaternary along this tectonic system.  相似文献   

6.
The Xianshui River faulll is a slrong seismic-genetic zone known both at home and abroad. It can be observed from the aerial photos and seismogeologic data that the northern segment of the fault is a linear single fault while its middle and southern segments extrude smoolhly toward the northeast. accompanied by sub-parallel fault branches. Citing Daofu area, Sichuan as an example and in the light of the geomorpholcgic evidences of the fault motions, seismic ground fissures and lhat contemporary seismicity tends to display itself along the linear faults, this paper discusses the branching mechanism of the Xianshui River fault, the process of which can be stated by the following:1) Linear faults tend to have the smallest resistance against horizontal shear motion. The Xianshui River fault presents single and linear features. 2) Slip rate difference at different segments of the fault owing to the different lithologic features and the NE pushing by the Asam syntaxis of the Indian plate have bent certain seg  相似文献   

7.
Based on velocity data of 933 GPS sites and using the methods of Ordinary Kriging interpolation and shape function derivation, this study has obtained the strain rate field of continental China in the spherical coordinates. In comparison with previous research results, it is found that such a strain rate field can be described by both the continuous deformation and block motions in the continent. The Tibetan Plateau and Tianshan region are characterized by continuous deformation which is distributed across the whole area. Within the blocks of South China, Tarim, Ordos, and Northeast China, little crustal deformation and deformation occurs primarily on the faults along their boundaries, which can be explained by the model of block motion. In other regions, such as the Yinshan-Yanshan block, North China block, and East Shandong-Yellow Sea, deformation patterns can be explained by both models. Besides, from southwest to northeast of continental China, there are three remarkable extensional zones of NW trending. These results imply that the NNE directed push of the India plate is the primary driving force accounting for the internal deformation of continental China. It produces the uplift, hori-zontal shortening and vertical thickening of the Tibetan Plateau as well as radiation-like material extru-sion. Of these extruded materials, one part accommodates the eastward "escape" of other blocks, generating convergence and compression of western China and widespread extension and local com-plicated deformation in eastern China under the joint action of the surrounding settings. The other part opens a corridor between the South China block and Tibetan Plateau, flowing toward southeast to the Myanmar range arc and filling the gap there which is produced by back-arc extension due to plate subduction.  相似文献   

8.
In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake (M_S=8.0) using GPS data obtained from the Crustal Movement Observation Network of China. The following issues are discussed. First, the strain fields of the Longmenshan fault zone located at the epicenter show slow accumulation, because of the tectonic dynamics process subjected to the eastward movement of the Bayan Har block. Second, the different movements between the Longmenshan fault and South China block are smaller than the errors of GPS observation. Third, the high value of compressive strain (2004~2007) is located at the epicenter, which shows that the local squeezing action is stronger than before. Fourth, the data from GPS reference stations in the Chinese Mainland show that crustal shortening is faster than before in the north-eastern direction, which is part of the background of the local tectonic dynamics increase in the Longmenshan fault zone.  相似文献   

9.
On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.  相似文献   

10.
Based on the GPS velocity field data of 1999-2007 and 2011-2013,we used the least squares configuration method and GPS velocity profile results to synthetically analyze the dynamic evolution characteristics of crustal deformation in the Yunnan area before and after the Wenchuan earthquake. The dynamic evolution of GPS velocity field shows that the direction is gradually changed from the south in the southern part of the Sichuan-Yunnan block to the south-west in the southern Yunnan block and there is a clear relative motion characteristic near the block boundary fault zone. Compared with the GPS velocity of 1999-2007, the results of 2011-2013 also reflect segmental deformation characteristics of the block boundary fault zone. Southeast movement shows a significant increase, which may be related to crustal deformation adjustment after the Wenchuan earthquake. The dynamic evolution of strain parameters shows a pattern of "extension in the middle and compression at both ends" in the whole area and the distribution of deformation (shear, extension or compression) is closely related to the background motion and deformation characteristics of the main fault zone. Compared with the results of the period of 1999-2007, the extensional deformation zone of 2011-2013 is expanded eastward and southward. The compressional deformation of the eastern boundary (the Xiaojiang fault zone) of the Sichuan-Yunnan block is no longer significant, which is mainly concentrated in the northern section of the Xiaojiang fault zone and may be related to the post-seismic deformation adjustment of the Wenchuan earthquake. The GPS velocity profile results show that the left-lateral slip velocity of the Xiaojiang fault zone reduced gradually from north to south (10mm/a-5mm/a), and the width of the northern section is wider. The right-lateral slip rate of the Honghe fault zone is about 4mm/a, and the deformation width is wider. The dynamic results show that the Wenchuan earthquake has little effect on the deformation modes of these two fault zones.  相似文献   

11.
张家口—渤海断裂带分段运动变形特征分析   总被引:1,自引:0,他引:1  
陈长云 《地震》2016,36(1):1-11
利用张家口—渤海断裂带(张渤带)及其邻区1999—2007年的GPS观测数据, 研究了该区域现今地壳水平速度场特征。 运用最小二乘配置方法获得应变率场的空间分布特征, 根据区域地壳主应变率、 面膨胀率和最大剪切应变率等形变场的空间变化, 分析了张渤带各分段的形变特征。 结果表明: 相对于欧亚框架, 研究区内GPS速度场以SE方向运动为主; 应变场以NE方向的主压应变为主, 伴随着近NW方向的张性应变; 整个张渤带及其邻区的高剪切变形区主要位于河北香河、 文安以及唐山等三个地区。 利用跨断层GPS剖面分析得到张渤带以左旋走滑为主, 兼有挤压运动。 华北平原块体和燕山块体的相对运动是张渤带左旋走滑的直接动力来源, 而印度板块与欧亚板块碰撞后继续向北的推挤作用则是张渤带运动变形的根本动力来源, 太平洋板块的作用相对较弱。  相似文献   

12.
The northwestern section of the Zhangjiakou-Bohai fault zone starts in the west of Zhangjiakou, extending southeast through Huailai, Shunyi and Tianjin and entering into the Bohai Sea, with a width up to several tens of kilometers, narrow in the west and wide in the east. The Neogene-Quaternary has extended in the northwest and southeast direction, forming a large regional active structure. There are many earthquakes of magnitude 7 or above in the history on the Zhangjiakou-Bohai fault zone and it is also a strong earthquake activity zone in eastern China. Therefore, the modern tectonic activities of this fault zone have an important impact on regional seismic hazard, and are of great significance for earthquake prediction and disaster reduction. In this paper, using the mobile GPS station observation data of 1999, 2007, 2009, 2011, 2013 and 2015, and with the rigid-linear elastic block motion model equation proposed by LI Yan-xing, the horizontal deformation rate and strain rate of the Zhangjiakou-Bohai fault zone of the five adjacent periods of 1999-2007, 2007-2009, 2009-2011, 2011-2013 and 2013-2015 were calculated, the tectonic activity characteristics and evolution of the fault zone were studied. The results show that in the five periods, the average deformation rate of the Zhangjiakou-Bohai fault zone is 1. 74mm/a, the left-lateral strike-slip rate is 1.59mm/a, and the compression rate is -0.59mm/a. The Zhangjiakou-Bohai fault zone is characterized by left-lateral strike-slip and compression on the whole, and the left-lateral strike-slip rate is greater than the compression rate at each period. The strike-slip rate is significantly greater than the compression rate, indicating that the activity of Zhangjiakou-Bohai fault zone is dominated by left-lateral strike-slip faulting with compression. The minimum principal strain rate of the Zhangjiakou-Bohai fault zone in the five periods varies from -12.06×10-9/a to -4.62×10-9/a, and the average minimum principal strain axis direction is N63.9°E, with little change in direction. The maximum principal strain rate varies from 1.55×10-9/a to 5.99×10-9/a, and the average maximum principal strain axis direction is N333.9°W, the direction does not change much. The strike of the Zhangjiakou-Bohai fault zone is NWW(the overall strike is calculated by N300°W), and the normal strain rate of the fault zone is -5.87×10-9/a(being compressional), and the shear strain rate is 12.70×10-9/a. The shear strain rate on the fault zone is about twice the value of the normal strain rate, and the shear strain rate of the fault zone is greater than the normal strain rate, which indicates the shear stress of the 5 periods of 1999-2007, 2007-2009, 2009-2011, 2011-2013 and 2013-2015 is relatively significant, suggesting that the fault plain is dominated by left-lateral shear stress. This suggests that the Japan 3·11 earthquake has little effect on the deformation strain of the Zhangjiakou-Bohai fault zone, and it does not change the nature of activity of the fault zone. The tectonic activity is still inheriting. Since the tectonic activity of the Zhangjiakou-Bohai fault zone has gradually decreased after the Japan 3·11 earthquake, the deformation strain evolution trend has gradually returned to a unified consistent state. Therefore, the deformation strain state of the Zhangjiakou-Bohai fault zone does not have the condition for strong earthquakes.  相似文献   

13.
方颖  江在森  顾国华 《地震研究》2007,30(2):152-156
介绍了用GPS连续观测资料反演断层运动的方法——网络滤波方法。用此方法探讨了华北地块边界带运动特征,并与发生在边界带附近和地块内部的地震活动及周边强震进行了比较,得出以下初步结论:郯庐大断裂和山西断陷盆地带的滑动量为1mm左右,整体活动水平有减弱的趋势;张家口—渤海断裂带滑动量为0.5mm左右,活动性逐渐增强;秦岭—大别山断裂内滑动量为0.5mm左右,活动性逐渐减弱。在2002年底至2003年底一年左右的时间内,华北地块边界带的滑动速率发生较大幅度的变化,同时,各边界带(秦岭—大别山断裂除外)的地震活动水平在2003年底达到高峰,说明边界带滑动速率急剧变化的结果导致边界带附近地震活动水平的加剧。另外,边界带滑动的特点表明了华北地块构造运动的整体性,推断华北地块的地壳运动可能与来自地球深部的地幔对流有关。  相似文献   

14.
INTRODUCTIONThe Zhangjiakou-Penglai fault zone has drawnextensive attentionfromseismologists and geologistssince it was determinedinthe1980’s(Zheng Binghua,et al.,1981).Ma Xingyuan,et al.(1989)consideredit asthe north boundaryof North China sub-block.Int…  相似文献   

15.
基于活动块体的基本概念,综合对研究区内活动断裂带空间展布、地震活动性等资料的分析将巴颜喀拉块体东部及邻区划分为巴颜喀拉块体(I)、华南块体(Ⅱ)、川滇块体(Ⅲ)和西秦岭块体(IV)等4个一级块体.利用GPS形变场、地球物理场等资料结合F检验法,将巴颜喀拉块体划分为阿坝(I1)、马尔康(I2)和龙门山(I3)3个次级块体,将西秦岭块体划分为岷县(IV1)和礼县(IV2) 2个次级块体.利用分布在各个块体内部的GPS测站,计算各活动块体及块体边界断裂带的运动变形特征.结果表明:各活动块体的整体运动包括平移和旋转运动;东昆仑断裂带、甘孜—玉树断裂带和鲜水河断裂带的滑动速率明显高于龙门山断裂带的滑动速率;巴颜喀拉块体东部走向北西或北西西的边界断裂表现出左旋拉张的特性;走向北东的边界断裂带,除成县—太白断裂带外,均表现出右旋走滑兼挤压的活动特征.巴颜喀拉块体的东向运动存在自西向东的速度衰减,衰减主要被龙日坝断裂带和岷江断裂带分解吸收,其中龙日坝断裂带的水平右旋分解非常明显,约为~4.8±1.6 mm/a,岷江断裂带的水平分解较弱.龙门山断裂带被马尔康、龙门山和岷县等次级块体分成南、中、北三段,龙门山断裂带中段上的主压应变率要明显小于龙门山断裂带南段上的应变率,其北西侧变形幅度从远离断裂带较大到靠近断裂带逐渐减小,表明其在震前已经积累了较高的应变能,有利于发生破裂滑动.汶川地震后,地表破裂带和余震分布揭示的断裂带运动性质自南西向北东由以逆冲运动为主,逐渐转为逆冲兼走滑的特征可能与龙门山断裂带中段所受主压应力方向自南西向北东的变化有关.马尔康、龙门山和岷县3个次级块体与华南块体之间较低的相对运动速度以及龙门山断裂带低应变率、强闭锁的特征都决定了汶川地震前龙门山断裂带低滑动速率的运动特征.  相似文献   

16.
中国大陆地壳水平运动速度场与应变场   总被引:1,自引:0,他引:1  
收集了中国大陆及周边地区GPS网的有关数据,提出了GPS网速度场的不同融合方法;经过融合建立了中国大陆及周边地区统一的地壳运动速度场,该速度场使用的有效GPS站共423个,其覆盖面积为1200万km^2;初步总结出中国大陆及周边地区地壳水平运动空间分布的基本特征;建立了板内块体的刚性弹塑性运动应变模型,对其进行了块体应变参数唯一性与速度残差中误差最小检验;根据中国大陆及周边地区的速度场,估计了8个块体的应变参数,分析了这些块体的应变状态,估计出的各个块体的应变状态与地质学、地球物理学方法估计的结果具有很好的一致性。用喜马拉雅块体主压应变方向估计的印度板块向欧亚板块碰撞力的主方向为北东7.1度。  相似文献   

17.
利用2016—2018年3期华北地区流动地磁矢量原始测量资料, 经数据计算获得2期华北地区和张家口—渤海地震活动带及邻区岩石圈磁场时空变化模型。 研究结果显示: 张家口—渤海地震带岩石圈磁场变化空间分布不均匀, 具有明显的分区特征, 在张家口段(西段)与北京段(中西段)分界处和北京段(中西段)与唐山段(中东段)分界处岩石圈磁场各要素具有明显的异常变化, 如水平矢量存在转向和幅值变化, 磁偏角与磁倾角具有正负异常高梯度带的特征, 这与张家口—渤海地震带构造分段性特征密切相关。 张家口—渤海地震带位于燕山块体与华北平原块体之间, 两者运动的平动速率之差是张家口—渤海地震带左旋走滑的直接动力来源, 而各断裂带左旋走滑速率之差很可能是岩石圈磁场空间变化分段性分布的主要原因。  相似文献   

18.
青藏高原东南缘南段现今变形特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以青藏高原东南缘南段1999—2017年的GPS速度场为主,结合小震分布、历史地震和活断层探测等资料,首先,基于Okada断层位错模型反演了研究区域主要活断层的滑动速率;其次,以断层滑动速率和GPS速度场观测资料作为约束,利用DEFNODE负位错方法反演了研究区域的块体内部变形及主要活断层的闭锁程度和滑动亏损;最后,计算研究区域现今应变率场,并结合Pms和XKS剪切波分裂结果,探讨分析了青藏高原东南缘的动力学特征.研究结果表明:(1)红河断裂带现今滑动速率明显低于南华—楚雄—建水断裂和无量山断裂;(2)红河断裂带的元江—元阳段、鹤庆—洱源段和小江断裂带北段处于强闭锁状态,南华—楚雄—建水断裂带和无量山断裂带中—北段的闭锁程度强于南段;(3)青藏高原东南缘南段现今地壳变形表现为近E-W向的拉张和近N-S向的挤压,最大剪切方向与Pms和XKS剪切波分裂的快波方向呈一定角度,表明地壳与地幔处于完全解耦状态,而中-下地壳低速层可能是壳幔解耦的主要原因之一;(4)青藏高原东南缘的整体变形受控于印度板块的推挤、印缅俯冲带的深源俯冲以及缅甸微板块与巽他板块的后撤/回退的共同作用.  相似文献   

19.
张家口—渤海断裂带分段活动性研究   总被引:5,自引:0,他引:5  
方颖  张晶 《地震》2009,29(3)
利用GPS资料, 用地壳运动强度和大空间尺度变形分析了张家口-渤海断裂带的活动性. 结果表明, 燕山地块与华北平原的地壳运动强度以张-渤带为明显的分界线, 张-渤带以左旋走滑为主. 通过最小二乘配置对GPS资料进行了空间去噪声处理, 并建立球面位错模型, 反演了张-渤带的11条断层, 结果表明: NW向断层以左旋走滑为主;NE向断层中, 活动性最强的是以倾滑为主的沧东断裂. 2001-2004年时段与1999-2001年时段相比, 张-渤带中西段、西段断层的走滑量略有减小, 而其中东段、东段的走滑量有较大程度增大. 这种现象可能与该区域构造应力场有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号