首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000–2500 years ago: eruptions of dacite with εNd = +5, εSr = ?10, variable δ18O,206Pb/204Pb ~ 18.76, Ca/Sr ~ 60, Rb/Ba ~ 0.1, La/Yb ~ 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with εNd = +4 to +8, εSr = ?7 to ?22, variable δ18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb= 18.81?18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with εNd = +6, εSr = ?13, δ18O~6‰, variable206Pb/204Pb, Ca/Sr ~ 77, Rb/Ba= 0.1, La/Yb ~ 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region.  相似文献   

2.
Early Permian (272 ± 2 Ma) diabase dikes from the Linxi area in central Inner Mongolia of NE China have high MgO (10.4 – 12.3 wt%), Cr (301 – 448 ppm) and Ni (167 – 233 ppm) concentrations, and show enrichments in large ion lithophile element (LILE) and light rare earth elements (REE) but depletions in high field strength element (HFSE, e.g., Nb and Ta), with depleted mantle‐type Sr [87Sr/86Sr (i) = 0.70315 – 0.70362], Nd [εNd (t) = +6.8 – +7.4], Pb [206Pb/204Pb (i) = 18.10 – 18.16] and zircon Hf [εHf (t) = +14.7 – +19.1] isotopic compositions, but slightly higher zircon δ18O (5.2 – 6.0 ‰ with an average of 5.7 ‰) than normal mantle. The combined geochemical data indicate their derivation from a depleted mantle metasomatized by recycled crustal component. Elemental and isotopic modeling results suggest that the primary magma was produced through 5 % to 10 % melting of a depleted mantle, which contained approximately 1 % sediment fluid released from the subducted paleo‐Asian Ocean. Considering the widespread distribution of contemporaneous mafic rocks across the central Inner Mongolia, which show REE patterns from E‐MORBs to normal MORBs, we propose a petrogenetic link between the Early Permian mafic magmatism and a back‐arc extension in response to northward subduction of the paleo‐Asian Ocean. The Permian mafic magmatism and the new age constraints from the metamorphic and sedimentary records in this area tend to indicate the ultimate closure of the paleo‐Asian Ocean by the end of Paleozoic.  相似文献   

3.
Feng  Guo  Weiming  Fan  Yuejun  Wang  Chaowen  Li 《Island Arc》2005,14(2):69-90
Abstract Early Cretaceous high‐K calc‐alkaline volcanism occurring in the Laiyang Basin north of the Sulu high‐pressure to ultrahigh‐pressure (HP‐UHP) Metamorphic Belt, eastern China, comprises a wide spectrum of rock types, ranging from trachybasalts to trachydacites. The basaltic–andesitic rocks erupted at 107–105 Ma, spanning an SiO2 range of 50.1–59.6% and an MgO range of 2.6–7.2%, and are characterized by large ion lithophile element (LILE; e.g. Ba and K) and light rare earth element (LREE) enrichment, high field strength element (HFSE) depletion and highly radiogenic Sr but non‐radiogenic Nd isotopic compositions (87Sr/86Sr(i) = 0.70750–0.70931; ?Nd(t) = ?17.9 ? ?15.6). The geochemical similarities between these rocks and the earlier Sulu Belt lamprophyres suggest that both types of mafic rocks were derived from similar mantle sources with LILE and LREE enrichment. Thus, the Wulian–Qingdao–Yantai Fault that separates the two terranes at the surface should not be considered as a lithospheric boundary between the North China and Yangtze blocks. The felsic lavas erupted at 93–91 Ma, spanning an SiO2 range of 61.6–67.0% and an MgO range of 1.1–2.6%, and show a trace element geochemistry similar to the basaltic rocks, but with higher radiogenic Sr and even lower Nd isotopic compositions (87Sr/86Sr(i) = 0.70957–0.71109; ?Nd(t) = ?19.1 ? ?17.5), similar to I‐type granitoids in the Sulu Belt. A crustal origin was proposed to explain their compositions (which are comparable to those of experimental slab melts), the >10 Ma eruption interval and the compositional gaps in some elements (e.g. P, Ti and Sr) between them and the older basaltic–andesitic rocks. These melts were derived from predominant metaigneous protoliths containing mafic accumulative counterparts of the basaltic–andesitic and/or lamprophyric magmas. The extensive extrusion of Early Cretaceous high‐K calc‐alkaline rocks in the Laiyang Basin favored an extensional regime in response to the progressive attenuation of the thickened lithosphere and orogenic collapse, as reflected in the development of the basin from a foreland basin (before the end of the Jurassic period) to a fault basin (since the Early Cretaceous period).  相似文献   

4.
Analyses for major and trace elements, including REE, and Sr, Nd and Pb isotopes are reported from a suite of Siluro-Devonian lavas from Fife, Scotland. The rocks form part of a major calc-alkaline igneous province developed on the Scottish continental margin above a WNW-dipping subduction zone. Within the small area (ca. 15 km2) considered, rock types range from primitive basalts and andesites (high Mg, Ni and Cr) to lavas more typical of modern calc-alkaline suites with less than 30 ppm Ni and Cr. There is a marked silica gap between these rocks (< 62%) and the rare rhyolites (> 74%), yet the latter can be generated by fractional crystallization from the more mafic lavas. In contrast, variation in incompatible element concentrations and ratios in the mafic lavas can not be generated by fractional crystallization processes. Increasing SiO2 is accompanied by increasing Rb, K, Pb, U and Ba relative to Sr and high field strength elements, increasing LREE enrichment and increasing Sr calculated at 410 Ma, and by decreasing HREE, Eu/Eu*, Sm/Nd and Nd (410). Nd and Sr are roughly anticorrelated and have more radiogenic compositions than the mantle array, in common with data reported elsewhere from this part of the arc. The correlation extrapolates up to cross the mantle array within the composition field of the contemporary MORB source, and extrapolates down towards the probable compositional range of Lower Palaeozoic greywackes, which may form the uppermost 8 km of the crust, or may be supplied to the source by subduction. One sample, however, lies within the mantle array, and closely resembles lavas from northwestern parts of the arc, where a mantle source with mild time-integrated Rb/Sr and LREE enrichment has been inferred. The lavas have relatively high initial 207Pb/204Pb for their 206Pb/204Pb, a feature which has been interpreted elsewhere as the result of incorporation of a sediment component into arc magmas. The systematic changes with increasing SiO2 in isotopic and chemical parameters can be explained by mixing of a greywacke-derived component with depleted mantle. The various possible mixing mechanisms are discussed, and it is considered most likely that mixing occurred in the mantle source through greywacke subduction. The bulk of the Rb, K, Ba and Pb in the lavas is probably recycled from the crust, whereas less than some 40% of the Sr and Nd is recycled. The calc-alkaline chemical trends are solely a function of mixing with the sediment component.  相似文献   

5.
The Cenozoic magmatic rocks of shoshonitic series in the eastern Qinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187– 0.707 254 for87Sr/86Sr, 0.512 305–0.512 630 for143Nd/144Nd, 18.53–18.97 for206Pb/204Pb, 15.51–15.72 for207Pb/204Pb and 38.38–39.24 for208Pb/204Pb. They are isotopically similar to the EMII end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau  相似文献   

6.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

7.
Measurements are reported of K, Rb and Sr levels and Sr isotopic compositions in silicate inclusions in diamonds, and of U, Th and Pb levels and Pb isotopic compositions in sulphide inclusions in diamonds. Samples are from the Premier Mine (Transvaal), the Finsch Mine (northern Cape Province) and the Kimberley mines (northern Cape Province). The isotopic composition of Pb in sulphide inclusions indicates that the diamonds containing these inclusions are xenocrysts in the host kimberlite. Model Pb ages for the sulphide inclusions in the diamonds from Finsch and Kimberley are in excess of 2 b.y., although the host kimberlites are Cretaceous. The sulphide inclusions from Premier, however, have a model age similar to the emplacement age of the Premier kimberlites (approximately 1.2 b.y.).In addition, K, Rb, Sr, U and Pb concentrations and Sr and Pb isotopic compositions in clinopyroxenes from 14 mantle-derived xenoliths were measured. Samples were eclogites from the Roberts Victor Mine (Orange Free State), peridotites from the Matsoku Pipe (Lesotho) and diopside megacrysts from the four mines in Kimberley. The samples from the Roberts Victor Mine define a large spread in Sr and Pb isotopic composition. The slope of a regression line through the Pb data in the 207/204 vs. 206/204 plot defines an age of roughly 2.5 b.y. The Matsoku samples have87Sr/86Sr ratios around 0.704. One group of samples (“fertile peridotites”) shows uniform, anomalously radiogenic Pb isotopic compositions, and bears evidence of a young event involving isotopic homogenisation. Lead isotopic heterogeneity, indicating an old age, has persisted in another group (“common peridotites”). The megacrysts from the four Kimberley mines have87Sr/86Sr ratios around 0.704 and uniform, anomalously radiogenic Pb isotopic compositions, indicating a young age. Their Pb isotopic uniformity contrasts with the spread shown by kimberlites in Kimberley, and shows that the megacrysts did not crystallise in equilibrium with their host kimberlites.The similarity between the Pb isotopic data obtained on clinopyroxenes from xenoliths and the data obtained on sulphide inclusions in diamonds from Finsch and Kimberley suggests that these diamonds might be cogenetic with old rock provinces in the subcontinental mantle.  相似文献   

8.
Abstract We present chemical and Sr–Nd–Pb isotopic compositions of three Triassic (226–241 Ma) calc‐alkaline granitoids (the Yeongdeok granite, Yeonghae diorite and Cheongsong granodiorite) and basement rocks in the northern Gyeongsang basin, south‐eastern Korea. These plutons exhibit typical geochemical characteristics of I‐type granitoids generated in a continental magmatic arc. The Yeongdeok and Yeonghae plutons have similar initial Sr, Nd and Pb isotope ratios (87Sr/86Srinitial = 0.7041 ~ 0.7050, ?Nd(t) = 2.3 ~ 4.0, 206Pb/204Pbfeldspar = 18.22 ~ 18.34), but distinct rare earth element patterns, suggesting that the two plutons formed from partial melting of a similar source material at different depths. The Cheongsong pluton has slightly more enriched Sr–Nd–Pb isotopic compositions (87Sr/86Srinitial = 0.7047 ~ 0.7065, ?Nd(t) = 3.9 ~ 2.8, 206Pb/204Pbfeldspar = 18.24 ~ 18.37) than the other two plutons. The Nd model ages of the basement rocks (1.1 ~ 1.4 Ga) are slightly older than those of the plutons (0.6 ~ 1.0 Ga). The initial Sr and Nd isotopic ratios of the plutons can be modeled by the mixing between the mid‐oceanic ridge basalt‐like depleted mantle component and the crustal component represented by basement rocks, which is also supported by Pb isotope data. The Sr and Nd isotope data from granitoids and basement rocks suggest that the Gyeongsang basin, the Hida belt and the inner zone of south‐western Japan share relatively young basement histories (middle Proterozoic), compared with those (early Proterozoic to Archean) of the Gyeonggi and Yeongnam massifs and the Okcheon belt. The Nd isotope data of basement rocks suggest that the Hida belt might be better correlated with the basement of the Gyeongsang basin than the Gyeonggi massif, the Okcheon belt or the Yeongnam massif, although it may represent an older continental margin of East Asia than the Gyeongsang basin considering its slightly older Nd model ages.  相似文献   

9.
Pb, Nd and Sr isotope analyses together with U, Pb, Sm, Nd, Rb and Sr concentrations have been obtained for separated phases of lherzolite and bulk rock mafic granulite xenoliths in Recent volcanics from Tanzania. A garnet lherzolite from the Lashaine vent has yielded the least radiogenicPb(206Pb/204Pb= 15.55) and Nd(143Nd/144Nd= 0.51127; ?Nd0 = ?26.7) isotope compositions recorded so far for an ultramafic xenolith, and 87Sr/86Sr= 0.83604. The Pb isotope compositions of the mafic granulites are variable 15.77<206Pb/204Pb<17.50 and some show evidence for depletion of U relative to Pb up to 2.0 Ga ago. Overall the isotope results suggest that the mantle part of the continental lithosphere beneath Tanzania has components that have undergone a complex history that includes major chemical fractionations ca. 2.0 Ga ago. A phlogopite-amphibole vein from the Pello Hill sample has Sr, Nd and Pb isotope compositions similar to those of mid-ocean ridge basalts, indicating both a young emplacement age for the vein material and a source which had an isotopic signature characteristic of depleted mantle.The Sr, Nd and Pb isotope systematics of ultramafic xenoliths do not conform with those of MORB, particularly in terms of their PbSr, and NdPb relationships. In this regard they are similar to some ocean islands and could be a viable source material for some ocean island basalts at least. The mantle part of the continental lithosphere is as likely to contain recycled components derived from the continental crust as are other regions of mantle. If the mantle part of continental lithosphere is invoked as a source for ocean islands, it does not negate the possibility that substantial recycled components are involved.  相似文献   

10.
Volcanic and hypabyssal rocks ranging in age from 12 to 3 Ma from the Fernando de Noronha archipelago in the western equatorial Atlantic Ocean can generally be divided into two age-compositional groups that have variable and distinct isotopic compositions. Predominantly older alkali basalts and trachytes are generally characterized by more radiogenic Sr-isotopic (87Sr/86Sr= 0.70457–0.70485) compositions and less radiogenic Nd-isotopic (143/Nd144Nd= 0.51271–0.51281) and Pb-isotopic (206Pb/204Pb= 19.132–19.282) compositions relative to the generally younger, more alkaline Si-undersaturated rocks which include nephelinites, ankaratrites, and melilitites (87Sr/86Sr= 0.70365–0.70418,143Nd/144Nd= 0.51277–0.51290,206Pb/204Pb= 19.317–19.565). These variations suggest the influence of at least two separate components in the source(s) of both series. One component is characterized by highRb/Sr and low μ, possibly derived from delaminated subcontinental lithosphere, whereas the other has high μ and lowRb/Sr similar to the source of St. Helena lavas. A third component is suggested by correlated compositions in the latest alkaline, Si-undersaturated lavas, and this component may be derived from depleted mantle. These isotopic variations in conjunction with the generally increasing degree of alkalinity with time are consistent with the temporal depletion of a low-μ, highRb/Sr component and increasing contributions from a high-μ component in the sources of the volanic rocks of Fernando de Noronha.  相似文献   

11.
The Cenozoic magmatic rocks of shoshonitic series in the easternQinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187-0.707 254 for 87Sr/86Sr, 0.512 305-0.512 630 for 143Nd/144Nd, 18.53-18.97 for 206Pb/204Pb, 15.51-15.72 for 207Pb/204Pb and 38.38-39.24 for 208Pb/204Pb. They are isotopically similar to the EMII end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau.  相似文献   

12.
Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China.The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb/Sr and Nd/Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb/204Pb vs 206Pb/204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb/204Pb vs 206Pb/204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components—a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle beneath eastern China served as the reservoir for the EMI component, and that the MORB component was either introduced by subduction of the Kula-Pacific Ridge beneath the Asiatic plate in the Late Cretaceous, as proposed by Uyeda and Miyashiro, or by upwellings in the subcontinental asthenosphere due to subduction.  相似文献   

13.
A suite of 16 basanitic volcanic rocks, representing all stages in the evolution of the La Breña — El Jagüey (LBEJ) Maar Complex, has been studied petrographically and analyzed for mineral compositions and whole-rock major element, trace element, and Sr–Nd–Pb isotopic compositions. Two feldspathic granulite xenoliths were also studied as possible lower-crustal contaminants to the LBEJ magmas. The volcanic rocks contain the stable minerals olivine, plagioclase, augite, and titanomagnetite±ilmenite, plus a diverse suite of xenocrusts derived from disaggregation of mantle xenoliths of spinel lherzolite (olivine, orthopyroxene, spinel) and lower-crustal granulite xenoliths (plagioclase, quartz, augite, ilmenite). Late-stage interstitial melts rich in Fe and Ti migrated into vesicles in several samples, forming coarse-grained segregation vesicles that are dominated by ilmenite blades up to 2 mm long. The whole-rock elemental data are typical of intra-plate basanitic rocks, with strong enrichments in large ion lithophile elements (i.e. K, Th, U) as well as high field strength elements (i.e. Nb, Ta) relative to mid-ocean ridge basalts (MORB) and estimates of primordial mantle abundances. Mg# increased systematically with time during the evolution of the LBEJ Maar Complex, from 57.0–58.2 in the pre-maar lavas to 59.1–63.8 in the post-maar lavas. Compatible elements (Ca, Sc, Cr, Co, Ni) correlate positively with Mg#, whereas a large group of incompatible elements (Al, Na, K, P, Rb, Sr, Zr, Nb, Ba, La, Ce, Sm, Hf, Ta, Th, U) correlate negatively with Mg#. These trends can be closely reproduced by simple models of fractional crystallization, provided that the incompatible element abundances of the parental, high-Mg# magmas are allowed minor variability. All successful fractionation models demand an important role for augite, despite its presence in the LBEJ volcanic rocks as only a late-stage microphenocrystic and groundmass mineral. Minor garnet fractionation is necessary to produce depletion of heavy rare earth element (REE) abundances in the pre-maar lavas, whose REE patterns cross those for the rest of the suite. The importance of augite and garnet fractionation indicate that the differentiation of the LBEJ magmas took place within the upper mantle, a conclusion that is supported by the presence of spinel lherzolite xenoliths in magmas from all stages in the evolution of the maar complex. Isotopic data for seven LBEJ volcanic rocks show the following ranges: 87Sr/86Sr 0.70327–0.70347, Nd 4.2–5.0, 206Pb/204Pb 18.60–18.81, 207Pb/204Pb 15.58–15.65, 208Pb/204Pb 38.19–38.58. Sr-Nd values are negatively correlated and form a trend parallel to the mantle array, overlapping the field for ocean island basalts (OIB). The LBEJ rocks have similar 87Sr/86Sr values but lower Nd compared to basanitic rocks from the US Basin and Range Province (BRP). Pb isotopic ratios are positively correlated and overlap the braod fields for MORB and OIB and the small fields for Mexican ore deposits and volcanic rocks from the active subduction-related Mexican Volcanic Belt. The LBEJ rocks have slightly more radiogenic Pb than basanitic rocks from the US BRP. Despite correlations among the isotopic ratios of the LBEJ suite, none of these ratios correlate with position in the eruption sequence, Mg#, or any other compositional parameter. The two lower-crustal xenoliths have high 87Sr/86Sr values (0.707, 0.710) and low Nd (-1.5,-8.0) compared to the LBEJ volcanic rocks, but their Pb isotopic compositions are only slightly more radiogenic than the volcanic rocks. These data do not support the widely held view that the lower crust is a major reservoir of unradiogenic Pb. In order to further constrain the role played by crustal contamination in generating the isotopic diversity in the LBEJ suite, we conducted an extensive investigation of Sr–Nd–Pb isotopic ratios for scoria clasts from different levels of a single scoria-fall horizon in the pyroclastic sequence related to the formation of La Breña Maar. Our results do not support an important role for crustal contamination in the LBEJ magmas. Rather, we conclude that minor isotopic variability exists in the mantle source regions beneath the maar complex.  相似文献   

14.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   

15.
Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = 3.28― 5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, ?8/4=21.18―774.43, ?7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.  相似文献   

16.
Trace elements and isotopic compositions of whole rocks and mineral separates are reported for 15 spinel-bearing harzburgite and lherzolite xenoliths from southeastern Australia. These samples have an exceedingly large range in isotopic compositions, with87Sr/86Sr ranging from 0.70248 to 0.70834 and εNd values ranging from +12.7 to −6.3. This range in isotopic compositions can be found in xenoliths from a single locality. The isotopic compositions of clinopyroxene separates and their whole rocks were found to be different in some xenoliths. Samples containing small glass pockets, which replace pre-existing hydrous minerals, generally show only small differences in isotopic composition between clinopyroxene and whole rock. In a modally metasomatized peridotite, significant differences in the Sr and Nd isotopic compositions of a coexisting phlogopite-clinopyroxene pair are present. Coexisting clinopyroxenes and orthopyroxenes from an anhydrous lherzolite have Sr isotopic compositions that are significantly different (0.70248 versus 0.70314), and yield an apparent age of 625 Ma, similar to that found previously by Dasch and Green [1]. However, the Nd isotopic compositions of the clinopyroxene and orthopyroxene are identical indicating recent (within 40 Ma) re-equilibration of Nd.Sr and Nd concentrations in the whole rocks and clinopyroxenes show an excellent positive correlation, and have an average Sr/Nd ratio of 15. This ratio is similar to the primitive mantle value, as well as that found in primitive MORBs and OIBs, but is much lower than that measured in island arc basalts and what might be predicted for a subduction zone-derived fluid. This indicates that a significant proportion of the Sr and Nd in these peridotites is introduced as a basaltic melt with intraplate chemical characteristics.The isotopic compositions of the peridotites reflect long-term, small-scale heterogeneities in the continental lithospheric mantle, and are in marked contrast to the near uniform isotopic compositions of the host alkali basalts (87Sr/86Sr= 0.7038–0.7041andεNd = +3.6 to +2.9). A minimum of three evolutionary stages are identified in the growth of the continental lithospheric mantle: an early basalt depletion event, recording the initial development and stabilization of the lithospheric mantle, followed by at least two enrichment episodes. These observations are consistent with continental lithospheric mantle growth involving the underplating of refractory peridotite diapirs.  相似文献   

17.
Lead isotope data of sulfides and host volcanic rocks from the Bukit Botol and Bukit Ketaya deposits, the two representative deposits of the Tasik Chini volcanic‐hosted massive sulfide (VHMS) deposit, Central Belt of Peninsular Malaysia, are reported. Lead isotope compositions of the associated sulfide minerals and volcanic rocks from the Bukit Botol deposit exhibit homogeneous and less radiogenic values (206Pb/204Pb showing a range of composition from 18.14 to 18.20, 207Pb/204Pb between 15.52 and 15.59 and 208Pb/204Pb from 37.96 to 38.35). Similarly, the Pb isotopic compositions of the host volcanic rocks from the Bukit Ketaya deposit yielded a narrow range to those of the sulfide samples (206Pb/204Pb from 18.04 to 18.20, 207Pb/204Pb between 15.43 and 15.57 and 208Pb/204Pb of 37.96 to 38.30). The uniform Pb‐isotope compositions of the sulfides in the ore horizon and the host volcanic rocks from both deposits suggest a derivation from a similar source reservoir and mineralization processes. In the framework of the tectonic model for the Central Belt of Peninsular Malaysia, both deposits display a range of lead isotopic compositions originated from mixing of bulk crust/juvenile arc and minor mantle sources, which are typical for VHMS deposits in an island arc–back arc setting.  相似文献   

18.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.  相似文献   

19.
Cheong-Bin  Kim  V. J. Rajesh    M. Santosh 《Island Arc》2008,17(1):26-40
Abstract Geochemical and Sr–Nd–Pb isotope characteristics, as well as K–Ar geochronology of a massive pitchstone (volcanic glass) stock erupted into Late Cretaceous lapilli tuff and rhyolite in the Gohado area, southwestern Okcheon Belt, South Korea, are reported. The pitchstones are highly evolved with SiO2 contents ranging from ~72 to 73 wt%, K2O/Na2O ratios of 1.04–1.23 and low MgO/FeOt values (0.17–0.20). The pitchstones are weakly peraluminous and the ASI (molar Al2O3/Na2O + K2O + CaO) values are significantly lower than 1.1. The pitchstones also display a general calc‐alkaline nature with significant alkali contents. The rare earth elements (REE) compositions show moderately fractionated nature with (La/Yb)N ranging from 11 to 16. Chondrite normalized REE patterns show relative enrichment of light REE over heavy REE and moderate Eu anomaly (Eu/Eu* ratio varies from 0.53 to 0.57). A distinct negative Nb anomaly is observed for all pitchstones on a primitive mantle normalized trace element diagram, typical of subduction‐related magmatism and crustal‐derived granites. All these features are characteristic of I‐type granites derived from a continental arc. The pitchstones have Zr contents of 98.5–103.5 ppm with zircon thermometry yielding temperatures of 749–755°C (mean 752°C). The K–Ar analyses of representative pitchstone samples yielded ages of 58.7 ± 2.3 and 62.4 ± 2.1 Ma with a mean age of 61 Ma. The rocks show nearly uniform initial 87Sr/86Sr isotopic ratios of 0.7104–0.7106 and identical 143Nd/144Nd initial ratio of 0.5120. The rocks display negative εNd (61 Ma) values of ?12. The depleted mantle model ages (TDM) range from 1.54 Ga to 1.57 Ga. The Pb isotope ratios are 206Pb/204Pb = 18.522–18.552, 207Pb/204Pb = 15.642–15.680 and 208Pb/204Pb = 38.794–38.923. These ratios suggest that the Gohado pitchstones were formed in a continental arc environment by partial melting of a 1.54 Ga to 1.57 Ga parental sources of lower crustal rocks probably of mafic or intermediate compositions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号