首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
联合预压作用下软土固结微观特征试验研究   总被引:1,自引:0,他引:1  
开展了室内模拟真空、堆载以及真空—堆载联合预压作用下软土的三轴固结试验;拍摄了试样在三轴试验前后的SEM电镜扫描照片;从宏观工程性质和微观结构变化及二者结合的角度研究了在三种预压方式下土体加固效果的不同和机理的差异。结果表明:土体的微观结构在预压荷载加固后发生了显著的变化,微观结构参数的变化与各自加载的方式相符,并与宏观物性参数的变化密切相关;宏观物性指标和微观结构参数的变化都表明,联合预压的效果最好,真空预压次之,最小的是堆载预压。试验说明土体的宏观工程性状在本质上决定于微观结构。  相似文献   

2.
基于ABAQUS的真空-堆载联合预压法的仿真研究   总被引:1,自引:0,他引:1  
利用有限元分析软件ABAQUS在仿真过程中直接模拟真空度,并通过ABAQUS的二次开发平台编写排水板单元子程序,对软土地基的真空-堆载联合预压进行仿真和固结分析,并与真空荷载换算为堆载方法进行对比。结果表明这种仿真模型更接近实际,分析地基变形与实际情况一致;塑料排水板单元子程序合理,可以有效减小分析误差。对天津港某软基的加固工程进行了建模仿真,其结果与实测数据相吻合,在误差允许范围内。通过计算不同泊松比、加固区宽度条件下真空-堆载联合预压的最终沉降量,分析得到了相应泊松比、加固区宽度的沉降修正系数,对类似的工程有一定的指导意义。  相似文献   

3.
张彦君  年廷凯  郑路  刘凯  宋雷 《地震工程学报》2015,37(2):428-433,438
以往对平面破坏模式的岩质边坡稳定性评价,主要关注潜在滑坡体在自重、坡体内静水压力和地震荷载耦合作用下沿破坏面的抗滑稳定性,并未涉及各类外荷载作用线不通过潜在滑体重心而引起的绕坡趾倾覆稳定性。针对这一问题,提出地震与张裂缝水压耦合作用下的岩质边坡倾覆稳定性解析方法,基于力矩平衡原理推导出岩质边坡抗倾覆稳定性系数的一般表达式;通过深入的变动参数比较研究,探讨张裂缝水压和地震荷载对抗倾覆安全系数的影响,认为水压是控制岩质边坡倾覆破坏的决定性因素,而地震荷载处于次要因素,其在一定程度上增加或减小抗倾覆稳定性。在此基础上建立不同参数组合下的岩质边坡抗倾覆稳定图,为工程技术人员快速评估饱水岩质边坡地震倾覆稳定性提供直接依据。  相似文献   

4.
通过对碳纤维布加固的带窗洞粘土砖墙在周期性荷载作用下受力性能的试验,研究了粘贴碳纤维布加固修复带窗洞粘土砖墙这种抗震加固方法的有效性和其抗震加固的效果.对加固后墙体的破坏形态、变形性能、耗能能力和承载力作了全面的分析,研究了碳纤维布加固带窗洞粘土砖墙的受力和变形特性,分析了碳纤维布对开裂砖墙的加固机理,表明碳纤维布用于带窗洞粘土砖墙的抗震加固是很有效的.  相似文献   

5.
潮区界是标志水位是否受潮动力影响的关键界面,对港航安全与区域防洪意义重大.限于研究方法,近期海平面上升以及大规模工程建设运行背景下的潮区界变动情况亟待研究.对2007~2016年长江下游水文站实测水位资料进行频谱分析,结合红噪声检验判断水位过程中的潮差变化,分析了长江河口潮区界变动范围与特征.结果显示:(1)特大枯水时期,九江站流量约8440m3s-1时,潮区界在九江附近;特大洪水时期,九江站流量约66700m3s-1时,潮区界在枞阳闸与池口之间;(2)自上而下九江流量对潮区界的影响沿程减弱,南京潮差的影响沿程增强,相近流量/潮差下潮区界位置有变动,变动范围随流量的增大而增大,随潮差的减小而增大;(3)在海平面上升以及流域河口工程建设的持续影响下,未来潮区界或将进一步上移.  相似文献   

6.
CFRP对砖墙抗震加固对比试验研究与计算分析   总被引:20,自引:0,他引:20  
结合一工程实践的需要,通过5片碳纤维布加固的新建墙体在周期反复荷载作用下的试验,研究了碳纤维布加固对砌体结构抗震性能的影响,以及砌砌体在碳纤维布加固后的受力特性,比较了不同加固方案对砖砌体加固效果的影响,在此基础上讨论了对碳纤维布加固砖墙抗剪承载力计算模型,并提出了简化计算公式。  相似文献   

7.
泗许高速公路地处淮北平原,该地区以粉土或粉细砂为主,在地震荷载作用下易于液化,公路建设应考虑抗液化措施。本文对土工织物散体桩的抗液化性能、复合地基承载力等进行研究,提出采用土工织物散体桩复合地基加固粉土路基的方法并对其加固机理进行分析。通过有限差分数值计算和现场试验两种方法,从超孔隙水压消散、承载力、桩土应力比、桩身应力等角度分析了土工织物散体桩加固粉土路基的加固机理,并提出土工织物散体桩优化设计的建议。  相似文献   

8.
预应力锚索加固石窟岩体的地震动力响应研究   总被引:2,自引:2,他引:2       下载免费PDF全文
根据锚索加固石窟岩体的特点,以甘肃安西榆林石窟的三个典型的工程段为例,通过动力有限元的方法对地震荷载作用下预应力锚索加固石窟岩体的位移场、应力场的模拟计算,得出了其动态响应和变化规律。并通过对地震荷载的频谱特性分析,揭示了地震荷载的特征周期对锚索加固石窟围岩的动力响应结果的影响。  相似文献   

9.
为了研究不同支撑形式对开洞框架结构加固抗震性能的影响,以人字支撑加固框架结构的水平低周反复试验为基础,采用抗震性能分析软件OpenSees,分别对采用人字形、X形和局部人字形支撑加固的开洞框架结构进行了模拟地震作用的非线性数值分析,通过对不同形式支撑加固框架的滞回曲线和骨架曲线比较分析,结果表明:数值分析结果与试验结果吻合较好,采用不同形式支撑加固后,框架的开裂荷载、屈服荷载和极限荷载得到不同程度的提高,其中人字支撑加固效果最好,局部人字支撑加固效果次之。  相似文献   

10.
新吹填土含泥量大、含水率大、渗透性差、零承载力,常规地基处理工法无法开展,地基处理面临诸多困难。针对该问题,提出了复式负压固结技术,该技术包括3道工序:改性真空预压、电渗降水和强夯动力固结。改性真空预压使地基得到初步固结,具备一定强度,为后序工作做准备;电渗降水可有效降低夯前地下水位和土体含水率,并促进夯后超孔隙水压力的消散;电渗降水和强夯动力固结多遍耦合,共同对吹填土进行地基加固。现场开展了复式负压固结技术工艺试验、土性试验和沉降变形监测。结果表明,应用于吹填泥的地基处理,改性真空预压可快速提高承载力,电渗法可迅速降低地下水位,有效避免强夯时"弹簧土"现象的发生,从而提高了最佳夯击能。复式负压固结技术可以有效地应用于新吹填软土地基。  相似文献   

11.
在分析饱和软土地基不同排水固结处理方法的基础上,将饱和软土渗透固结按其作用机理的不同区分为压缩型固结和渗透力型固结;渗透力型固结又分为减压型和加压型两种形式,将真空预压归类于减压型渗透力固结。提出了超稳定渗流孔隙水压力的概念,得出了渗透力型固结的过程就是超稳定渗流孔隙水压力逐渐转化为有效应力的过程的结论;建立了渗透力型固结沉降计算的简化方法。并对渗透固结处理软土地基的若干问题进行了分析和讨论。  相似文献   

12.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

13.
Chen X 《Ground water》2001,39(5):721-728
Analysis of stream-aquifer interaction due to ground water extraction has traditionally focused on the determination of the amount of water depleted in the stream. Less attention has been paid to the movement of infiltrated stream water inside aquifer, particularly for agricultural areas. This paper presents a method of using particle-tracking techniques to evaluate the transport of the leaked stream water in the nearby aquifers. Simple stream-aquifer conditions are used to demonstrate the usefulness of the analysis. Travel times, pathlines, and influence zones of stream water were determined between a stream and nearby pumping wells for seasonal ground water extraction areas. When water quantity is a concern, the analyses provide additional information about stream depletion; when water quality is an issue, they offer information for wellhead protection. Analyses were conducted for transient conditions, and both pumping and nonpumping periods were considered. According to the results from the simulation examples, migration of infiltrated stream water into the nearby aquifers is generally slow and most infiltrated stream water does not arrive at the pumping well at the end of a 90-day irrigation season. Infiltrated stream water may remain in the aquifer for several years before arriving at the pumping well. For aquifers with a regional hydraulic gradient toward streams, part of the infiltrated stream water may discharge back to streams during a recovery period.  相似文献   

14.
Extending electromagnetic methods to map coastal pore water salinities   总被引:1,自引:0,他引:1  
The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems.  相似文献   

15.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

16.
The results of long-term measurements of residual deformations in the area of the Severomuiskii tunnel during its construction are given. Comparison of spatial and temporal distributions between deformations and earthquakes shows that they are interrelated. The nonlinear behavior of disintegrated and waterlogged rocks within tectonic fault zones should be taken into account even for moderate intensity earthquakes, since they are accompanied by ground subsidence. Underground workings within such sites are subjected to loads that are greater than expected according to current hypotheses, which are the basis for calculations of rock pressure. It is established that the most probable mechanism of ground subsidence and residual deformation in underground workings could be the gravity load of the overlying strata of disintegrated and waterlogged rocks within a fault zone, which leads to instability of the rocks. Approximate stress estimations are made on the basis of the results of measurements of residual deformations of roof supports (linings).  相似文献   

17.
The intertidal topography in the vicinity of the contact zone between a longshore-migrating Amazon-derived mud bank and the muddy terrestrial shoreline in French Guiana was defined from a combination of satellite-based SPOT images, airborne lidar data and high-resolution total station ground surveying of a 75,000 m2 plot. The three approaches, at different scales, were carried out at different periods. Digital elevation models generated from these three techniques, however, converge in highlighting the topographic micro-scale (centimetre-scale) variability of the mud bank surface while showing meso- to macro-scale features that reflect the dominance of wave activity in mud bank mobilization and attachment to the terrestrial shoreline. These features are bar-like longshore forms that develop in the intertidal zone from the shoreward drift of gel-like mud that accompanies wave damping. The features progressively become consolidated through mud drying out associated with the formation of cracks that are important in mangrove colonization and ecological changes. Fluid-mud accumulations formed from high concentrations of mud trapped in the troughs behind these linear bar forms generate flat featureless surfaces that tend to mask topographic heterogeneity of the mud bank surface. Dewatering of these lower zones by progressive mud consolidation complements tidal water discharge in providing a mechanism for the formation of the numerous channels that dissect the linear bar features, especially in the upper intertidal contact zone with the terrestrial shoreline. This dissection in the upper intertidal zone generates an intricate topography that replaces the original linear bar forms. The innermost bar forms a ‘suture’ zone with the terrestrial shoreline. Reworking of this bar by high-energy waves may lead to mud dispersal over old terrestrial mangrove substrates, resulting in stifling of mangrove pneumatophores. Mud reworking at the narrow trailing edge of the mud bank in the subtidal and lower intertidal zones leaves behind a flat bed that will eventually be completely eroded by waves in the course of mud bank migration.  相似文献   

18.
Preloading is a temporary loading, usually an embankment, applied to improve subsurface soils by densification. This paper studies the effect of preloading on the amplification characteristics of soft sites with an elaborate parametric analysis. The soil type, the depth of the bedrock, the water table depth, the level of preloading, the applied earthquake, the shear wave velocity of the bedrock and the shear modulus and damping versus shear strain relations were varied in a systematic manner. The analysis was performed by the commonly used one-dimensional equivalent-linear dynamic method. The shear wave velocity versus depth and the effect of preloading on shear velocity are computed with well-established soil mechanics equations. The results illustrated that the seismic response at the top of the profile generally decreases as a result of preloading. A more detailed analysis of results shows that the effect of preloading on the seismic response depends on the soil type and the depth of the bedrock. Based on these results, a method is proposed by which a practicing engineer involved with improvement of soft ground can simulate the effect of preloading on the seismic motion.  相似文献   

19.
A New System for Ground Water Monitoring   总被引:4,自引:0,他引:4  
This paper describes a new system for ground water monitoring, "the BAT System," which includes the following functions: (a) sampling of ground water in most types of soils, (b) measurement of pore water pressure, and (c) in situ measurement of hydraulic conductivity. The system can also be used for tracer tests. The system utilizes a permanently installed filter tip attached to a steel or PVC pipe. Installation is normally performed by pushing the tip down to the desired depth. The filter tip can also be buried beneath a landfill. The primary feature of the new system is that the filter tip contains a self-sealing quick coupling unit, which makes it possible to temporarily connect the filter tip to adapters for various functions, e.g. water sampling and for measurement of pore pressure and hydraulic conductivity. The new technique makes sampling of both pressurized water and gas possible. Samples are obtained directly in hermetically sealed, pre-sterilized sample cylinders. Sampling of ground water and measurement of pore pressure can be repeated over a long period of time with undiminished accuracy. This technique is also well-adapted for taking water samples from different strata in a soil profile, in both the saturated and unsaturated zones. Actual installations range from 0.5 to 60m depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号