首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bayer P  Finkel M  Teutsch G 《Ground water》2004,42(6-7):856-867
A detailed analysis is presented of the hydraulic efficiency of plume management alternatives that combine a conventional pump-and-treat system with vertical, physical hydraulic barriers such as slurry walls or sheet piles. Various design settings are examined for their potential to reduce the pumping rate needed to obtain a complete capture of a given contaminated area. Using established modeling techniques for flow and transport, those barrier configurations (specified by location, shape, and length) that yield a maximum reduction of the pumping rate are identified assuming homogeneous aquifer conditions. Selected configurations are further analyzed concerning their hydraulic performance under heterogeneous aquifer conditions by means of a stochastic approach (Monte Carlo simulations) with aquifer transmissivity as a random space function. The results show that physical barriers are an appropriate means to decrease expected (mean) pumping rates, as well as the variance of the corresponding pumping rate distribution at any given degree of heterogeneity. The methodology presented can be transferred easily to other aquifer scenarios, provided some basic premises are fulfilled, and may serve as a basis for reducing the pumping rate in existing pump-and-treat systems.  相似文献   

2.
The original structural design of this case study consisted of five basement floors and a 34‐story hotel tower in Kaohsiung, Taiwan. The construction started in 1993, and the erection of the entire steel frame and the pouring of concrete slabs up to the 26th floor were completed before 1996. However, construction of the original hotel was subsequently suspended for 10 years. Recently, this building has been retrofitted for residential purposes. Buckling restrained braces (BRBs) and eccentrically braced frames were incorporated into the seismic design of the new residential tower. This paper presents the seismic resisting structural system, seismic design criteria, full‐scale test results of one BRB member and the as‐built welded moment connections. Test results confirm that the two side web‐plate stiffening details can effectively improve the rotational capacity of welded moment connection. The paper also discusses the analytical models for simulating the experimental responses of the BRB members and the welded moment connections. Nonlinear response history analyses (NLRHA) indicate that the inelastic deformational demands of the original and the redesigned structures induced by the maximum considered earthquakes are less than those found in the seismic building codes or laboratory tests. This paper also proposes a ground motion scaling method considering multi‐mode effects for NLRHA of the example building. It is shown that the proposed scaling method worked well in reducing the scatter in estimated peak seismic demands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Influence of rainfall spatial variability on flood prediction   总被引:9,自引:0,他引:9  
This paper deals with the sensitivity of distributed hydrological models to different patterns that account for the spatial distribution of rainfall: spatially averaged rainfall or rainfall field. The rainfall data come from a dense network of recording rain gauges that cover approximately 2000 km2 around Mexico City. The reference rain sample accounts for the 50 most significant events, whose mean duration is about 10 h and maximal point depth 170 mm. Three models were tested using different runoff production models: storm-runoff coefficient, complete or partial interception. These models were then applied to four fictitious homogeneous basins, whose sizes range from 20 to 1500 km2. For each test, the sensitivity of the model is expressed as the relative differences between the empirical distribution of the peak flows (and runoff volumes), calculated according to the two patterns of rainfall input: uniform or non-uniform. Differences in flows range from 10 to 80%, depending on the type of runoff production model used, the size of the basin and the return period of the event. The differences are generally moderate for extreme events. In the local context, this means that uniform design rainfall combining point rainfall distribution and the probabilistic concept of the areal reduction factor could be sufficient to estimate major flood probability. Differences are more significant for more frequent events. This can generate problems in calibrating the hydrological model when spatial rainfall localization is not taken into account: a bias in the estimation of parameters makes their physical interpretation difficult and leads to overestimation of extreme flows.  相似文献   

4.
Abstract

Two ways of connecting numerical hydrological models that have significantly differently sized calculation time steps are compared. A model for rainfall–runoff and surface water flow (SOBEK) is connected to a model for groundwater flow (TRIWACO). Data exchange between the two models takes place at the end of each larger time step. In the “explicit” connection, both models calculate every time step only once, after which the algorithm moves to the next time step. In the “implicit” connection, the same time step is recalculated with the exchanged data until the resulting exchanged values converge. Due to the iteration, implicit connections require more calculation time, which can only be justified if it leads to significant improvements of model predictions. By simulating the hydrological situation of the Huewelerbach basin in Luxembourg, this work shows that implicit and explicit connections can indeed lead to significantly different calculation results.

Citation Vergroesen, A. J. J., van de Giesen N. C. & van de Ven, F. H. M. (2010) Comparison of implicit and explicit connection of fast- and slow-flowing components of a water system. Hydrol Sci. J. 55(3), 287–302.  相似文献   

5.
In this study, the correction problem of mean‐field bias of radar rain rate was investigated using the concept of linear regression. Three different relationships were reviewed for their slopes to be used as the bias correction factor: Relationship 1 (R1) is based on the conventional linear regression, relationship 2 (R2) is forced to pass the origin and relationship 3 (R3) is the line whose slope is the G/R ratio. In other words, R1 is the regression line connecting the intercept and the mass centre of measurement pairs, R2 is the regression line forced to pass the origin, and R3 is the line connecting the origin and the mass centre. The slopes of all three relationships were reviewed analytically to compare them, and thereby, the effect of zero measurements could be evaluated. Additionally, the effect of using switched independent and dependent variables on the derived slopes was also evaluated. The theoretically derived results were then verified by analysing the rainfall event on 10–11 August 2010 in Korea. Finally, the difference between the bias‐corrected radar rain rate and the rain gauge rain rate was quantified by root mean square error and mean error so that it could be used as a measure for the evaluation of bias correction factors. In conclusion, the slope of R2 was found to be the best for the bias correction factor. However, when deciding the slope of this R2, the radar rain rate should be used as the independent variable in the low rain rate region, and the rain gauge rain rate in the high rain rate region above a certain threshold. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
1.INTRODUCnONSAn~sizeplaysanimpo~roleinmanyfields,SUChasinndmeDt-laden~ordebrisflow.TheStateofsedimentmovementwhateVertheyaresugunded.jUInpingorbed-loading,isoftencloselyrelatedtOtheirSizes.Thebodyor~forcesbornacaglainareOftendiredproponionedtotheabcorSq~sizeofthisgrain.Thereforesedimentsizeisanimpohalltindextoesedimentcharacteristics.Besides,depositsizeanditsdistributionimplysome~infonnationdepositingfonnationenvironmentandcauseing~hyandgeqlogy.Ina~on.thesizeanditsdistributionareeac…  相似文献   

7.
When linearity can be assumed (linear response of heads to stresses), stream–aquifer flow exchange can be simulated as the drainage of a number of independent linear reservoirs. This conceptual model, which can be mathematically deduced in a univocal way from an eigenvalue solution of the linear groundwater flow problem, facilitates the understanding of the physical phenomenon and the analysis of influencing factors. The number of reservoirs required to simulate stream depletion in some ideal homogeneous cases of stream–aquifer connection was analyzed in detail in a previous investigation using analytical eigenvalue solutions [16]. However, most aquifers are heterogeneous in nature and numerical solutions must be employed to analyze whether they could also be simulated using few reservoirs. This paper presents a stochastic analysis of the influence of heterogeneity on the simulation of natural groundwater discharges in aquifers connected to rivers, as a series of linear reservoirs. A Monte-Carlo approach was employed to perform this study. The results show that, on a monthly time scale, many cases (even heterogeneous aquifers) can be simulated using just a few reservoirs with sufficient accuracy and at minimum computational cost. Therefore, this modeling technique can be useful to efficiently simulate the integrated management of complex water resources systems at the basin scale (with many aquifers, reservoirs, demands, etc.) that need to simultaneously consider surface and groundwater flow and stream–aquifer interaction.  相似文献   

8.
This paper presents a new methodology for optimal operation of inter-basin water transfer systems by conjunctive use of surface water resources in water donor basin and groundwater resources in water receiving basin. To incorporate the streamflow uncertainty, an integrated stochastic dynamic programming (ISDP) model is developed. In the ISDP, the monthly inflow to the reservoir in the water donor basin, the water storage of the reservoir, and the water storage of the aquifer in the water receiving basin are considered as state variables. A water allocation optimization model is embedded in the main structure of ISDP and a new ensemble streamflow prediction model based on K-nearest-neighbourhood algorithm is also developed and linked to the ISDP. By using a new reoptimization process, the ISDP model provides monthly policies for water allocation to users in water donor and receiving basins. As water users can form a coalition to increase their benefits, several solution concepts in cooperative game theory, namely Nash–Harsanyi, Shapley, Nucleolus, Weak Nucleolus, Proportional Nucleolus, Separable Costs Remaining Benefits (SCRBs) and Minimum Costs Remaining Savings are utilized to determine the profit of each water user. In the last step, stakeholders make negotiation over these solution concepts using the Fallback bargaining theory to reach a unanimous agreement on the final distribution of the total benefit. The methodology is applied to an inter-basin water transfer project and the results show that the Shapley and SCRB solutions concepts can provide better distributions for the total benefit and the total benefit of water users is increased by a factor of 1.6 when they participate in a grand coalition.  相似文献   

9.
An assessment of seismic demands and capacities of welded column splice (WCS) connections in steel moment frames is presented. For demand assessment, nonlinear dynamic analyses are conducted for two case‐study buildings, that is, a 4‐story and a 20‐story moment frame. Results from the nonlinear dynamic analyses are assessed through a probabilistic seismic demand analysis (PSDA) framework to characterize recurrence rates of longitudinal flange stress in these connections. The PSDA is applied in two contexts. First, in the context of WCS connections constructed prior to the M 6.7 1994 Northridge earthquake, the PSDA is combined with sophisticated finite element‐based fracture mechanics analysis to compute the mean annual frequencies of fracture in these connections. The pre‐Northridge WCS are especially critical because they feature partial joint penetration and brittle materials that compromise their resistance to fracture. The analysis indicates that the mean annual frequencies of fracture in these connections may be unacceptably high for both the 4‐story and the 20‐story frames. This warrants a serious and urgent consideration of retrofit strategies. These findings are attributed to the brittleness of the pre‐Northridge splices (as indicated by the fracture mechanics simulations), as well as the force‐controlled nature of these components, wherein low‐intensity ground motions contribute disproportionately to fracture risk, as evidenced by fracture risk disaggregation. Second, in the context of new construction, the PSDA provides meaningful stress magnitudes for design. Currently, WCS connections employ complete joint penetration welds with the intent to develop the smaller column flange in yielding. The PSDA conducted in this study suggests that this requirement may be too stringent because stress demands in the splices corresponding even to high return periods (e.g., 2475 years) are significantly lower (~40 ksi), as compared with the stress required to yield the column (~55 ksi). Limitations of the study are outlined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Baseflow in the Andes is commonly considered to be related with the release of water stored in páramos. Páramo is the predominant ecosystem above 3500 m a.s.l. and is characterized by a rainy and cold climate with low evapotranspiration. However, this baseflow concept is based on hydrological process studies in small Andean catchments of a few square kilometre with a homogeneous land cover. Middle‐sized Andean catchments, like the subcatchments of Tarqui and Yanuncay, Ecuador, are rarely homogeneous or uniformly covered by páramo. The objectives of this study are therefore to investigate baseflow characteristics in heterogeneous Andean catchments and to identify relationships between baseflow processes and physical characteristics such as storage and recharge. Hereby, the contribution to baseflow of páramo and other sources such as alluvial aquifers is quantified. This study uses nonlinear recession analysis, physically based filters and digital filters for comparison of baseflow of neighbouring but distinct subcatchments. The Yanuncay subcatchment shows a clearly different storage capacity and recession. The storage capacity of Yanuncay is 50% higher than for Tarqui because of its higher coverage of páramo. On the other hand, considerable storage capacity has also been found in the Tarqui subcatchment, which has a limited páramo area but a significant alluvial aquifer. It is shown that improved understanding of the specific baseflow characteristics such as storage and recharge and its relationships to the heterogeneity of the land cover in Andean catchments will lead to a better assessment of the water resources and give new insights for effective management actions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Monte Carlo simulations are conducted to evaluate microbial-mediated contaminant reactions in an aquifer comprised of spatially variable microbial biomass concentrations, aquifer hydraulic conductivities, and initial electron donor/acceptor concentrations. A finite element simulation model is used that incorporates advection, dispersion, and Monod kinetic expressions to describe biological processes. Comparisons between Monte Carlo simulations of heterogeneous systems and simulations using homogeneous formulation of the same two-dimensional transport problem are presented. For the assumed set of parameters, physical aquifer heterogeneity is found to have a minor effect on the mass of contaminant biodegraded/transformed when compared to a homogeneous system; however, it noticeably changes the dispersion, skewness, and peakness of contaminant concentration distributions. Similarly, for low microbial growth rate, given favorable microbial growth characteristics, biological heterogeneity has minor effect on the mass of contaminant biodegraded/transformed when compared to a homogeneous system. On the other hand, when higher effective growth rates are assumed, biological heterogeneity and spatial heterogeneities in essential electron donor/acceptors reduce the efficiency of biotic contaminant reactions; consequently, model simulations derived from heterogeneous biomass distributions predict remediation time scales that are longer than those simulated for homogeneous systems. When correlations between physical aquifer and biological heterogeneities are considered, the assumed correlation affects predicted mean and variance of contaminant concentration and biomass distributions. For example, an assumed negative correlation between hydraulic conductivity and the initial biomass distribution produces a plume where less efficient biotic contaminant reactions occur at the leading edge of the plume; this is consistent with less degradation/transformation occurring over regions of higher groundwater velocities. However, the presence and absence of these correlations do not appear to affect the efficiency of microbial-mediated contaminant attenuation.  相似文献   

12.
Two different approaches to finite-difference modeling of the elastodynamic equations have been used: the heterogeneous and the homogeneous. In the heterogeneous approach, boundary conditions at interfaces are treated implicitly; in the homogeneous, they are explicitly discretized. We present a homogeneous finite-difference scheme for the 2-D P-SV-wave case. This scheme represents a generalization of earlier such schemes, being able to model media with arbitrary non-uniformities, provided only that all interfaces are aligned with the numerical grid. We perform a detailed comparison of the generalized homogeneous scheme with the analogous heterogeneous scheme, and show the two schemes to be identical for media with a spatially constynt Poisson's ratio. For media where Poisson's ratio is spatially varying, the schemes differ by terms first-order in the spatial step size. However, a comparison of the numerical results produced by the two schemes shows that the resulting differences are negligible for a wide range of values of the Poisson's ratio contrast.  相似文献   

13.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

14.
REID  H.E.  BRIERLEY  G.J.  BOOTHROYD  I.K.G. 《国际泥沙研究》2010,25(3):203-220
The role of geomorphic structure, referred to as physical heterogeneity, and its influence upon the colonization of habitat by macroinvertebrates was analysed in the peri-urban, Twin Streams Catchment, in West Auckland, New Zealand. Using a cross-scalar approach, 4 riffle-run assemblages were analysed in each of 2 River Styles (a confined, low sinuosity, gravel bed river and a partly confined, low sinuosity, bedrock, cobble, and gravel bed river). Each of these 8 locations comprised 2 distinct sampling areas; the upstream zone had a more heterogeneous river bed with a high diversity of physical features and flow, whilst the downstream area had a more homogeneous structure. Microhabitat features sampled at each site included streambed material, bank margins, fine grained organic debris, wood, and boulders. Habitat mosaics and their associated macroinvertebrate relationships followed a semi-predictable but interrupted pattern, supporting the view that river systems are a patchy discontinuum. Homogeneous zones were more frequently characterised by higher proportions of Trichoptera than heterogeneous zones, whilst heterogeneous zones were frequently characterised by Plecoptera and Ephemeroptera. Diversity was maximised when the species pools from heterogeneous and homogeneous sites were combined for any given site. Functional habitats influenced macroinvertebrate assemblages in non-linear and complex ways. Wood and organic debris habitats were associated with high diversity, abundance, and sensitive species whereas streambed habitat was usually associated with low diversity. A diverse range of physical zones that approximates the 'natural range of behaviour' for the given type of stream was considered to provide a more effective platform for rehabilitation planning than emphasising heterogeneity of physical structure in its own right.  相似文献   

15.
Work done initially with Y. Ogura and later by the present author was reviewed, with special emphasis on physical concepts in a cloud model. The present paper consists of two parts: a warm rain study and a graupel cloud model. The process of continuous improvement on physical ideas taken to formulate warm rain are described in the first part of this paper. It is shown that the number concentration of cloud droplets is the most sensitive factor in determining rainfall, and that there is a critical drop size distribution for initiation of rain. The second part describes a graupel cloud model and shows that graupel formation is the mechanism most likely to lead to precipitation from continental shallow convective clouds.  相似文献   

16.
为了了解PRC结构竖缝的抗震性能,并进行合理的设计,以试验结果及理论分析为基础,对竖缝在反复荷载作用下强度和刚度的退化进行分析,认为接缝混凝土强度的退化率随接缝宽度的增大而减小;接合筋强度退化率仅与剪切摩擦系数有关;接缝强度的退化率随接缝宽度增大而减小,与接合筋的关系呈非线性;接缝刚度退化率随缝宽增大而减小,与接合筋关系不大。  相似文献   

17.
Sediment fences are often used to monitor hillslope erosion, but these can underestimate sediment yields due to overtopping of runoff and associated sediment. We modified four sediment fences to collect and measure the runoff and sediment that overtopped the fence in addition to the sediment deposited behind the fence. Specific objectives were to: (1) determine the catch efficiency of sediment fences measuring post-fire hillslope erosion; (2) assess particle sorting of sand, silt/clay, and organic matter from each hillslope through the sediment fence and subsequent runoff collection barrels; (3) evaluate how catch efficiency and particle size sorting relate to site and rainfall-runoff event characteristics; and (4) use runoff simulations to estimate sediment fence volumes for future post-fire monitoring. Catch efficiency ranged from 28 to 100% for events and 38 to 94% per site for the entire sampling season, indicating a relatively large underestimation of sediment yields by sediment fences. Most of the eroded sediment had similar proportions of sand and silt/clay as the hillslope soils, but the sediment behind the fence was significantly enriched in sand while the sediment that overtopped the fence was more strongly enriched in silt/clay. The sediment fences had capacities of 3 m3 for hillslopes of 0.19–0.43 ha, but simulations of runoff for 2- to 100-year storms indicate that the sediment fences would need a capacity of up to 240 m3 to store all of the runoff and associated sediment. More accurate measurements of sediment yields with sediment fences require either increasing the storage capacity of the sediment fence(s) to accommodate the expected volume of runoff and sediment, reducing the size of the contributing area, or directly measuring the runoff and sediment that overtop the fence. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is Part II of a two‐part paper describing a full‐scale 3‐story 3‐bay concrete‐filled tube (CFT)/buckling‐restrained braced frame (BRBF) specimen tested using psuedo‐dynamic testing procedures. The first paper described the specimen design, experiment, and simulation, whereas this paper focuses on the experimental responses of BRBs and BRB‐to‐gusset connections. This paper first evaluates the design of the gusset connections and the effects of the added edge stiffeners in improving the seismic performance of gusset connections. Test results suggest that an effective length factor of 2.0 should be considered for the design of the gusset plate without edge stiffeners. Tests also confirm that the cumulative plastic deformation (CPD) capacity of the BRBs adopted in the CFT/BRBF was lower than that found in typical component tests. The tests performed suggest that the reduction in the BRB CPD capacities observed in this full‐scale frame specimen could be due to the significant rotational demands imposed on the BRB‐to‐gusset joints. A simple method of computing such rotational demands from the frame inter‐story drift response demand is proposed. This paper also discusses other key experimental responses of the BRBs, such as effective stiffness, energy dissipation, and ductility demands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the mixing conditions of the Saidenbach storage reservoir with a mean depth of 15.35 m are investigated during the full spring overturns. The vertical distribution of algae proves to be a very useful supplement to the simultaneously measured vertical temperature profile for the interpretation of the results. With its aid, concrete details about the actual mixing depth and the frequency of circulation can be obtained. For the storage reservoir mentioned a maximum turnover time of 0.7 d was calculated, which theoretically should still lead to a homogeneous distribution of algae. It is found, however, that in periods usually characterized as full spring circulation in spite of an approximate isothermic behaviour frequently homogeneous distribution is not achieved, i.e. mixing is not intensive enough. Therefore, mostly the period of full overturn is confined to the time during which the surface temperature of water still is <4°C (daily measurements required) and therefore convectional mixing can be assumed even if there is no external wind effect. Even during these restricted periods of time occasionally significant heterogeneous distributions, i.e. slight stratifications, can be proved. Therefore, it should be more correct to designate the time of the so-called full overturn as the time of the greatest instability, during which a full mixing is very probable but should not be assumed from the beginning (e.g. not without checking the relevant vertical algae distributions).  相似文献   

20.
This paper evaluates the performance and winter hydrology of two small‐scale rain gardens in a cold climate coastal area in Trondheim, Norway. One rain garden received runoff from a small residential watershed over a 20 month study period while the second rain garden with a shorter study period of 7 months was used as a control. The objective of the study was to investigate the extent to which cold climatic conditions would influence the hydrology and performance of the rain gardens. The hydraulic detention, storm lag time and peak flow reduction were measured and compared seasonally. No significant difference between seasonal lag time could be found, but there was a clear decreasing trend in lag time between rain, rain‐on‐snow and snowmelt. The average peak flow reduction for 44 storms in the study period was 42% compared to 27% for the winter seasons, indicating that the performance of the rain garden is reduced in the cold season (below 0 °C). The average hydraulic detention time for the rain garden was 0·84 ( ± 0·73) with runoff inflow and 1·91 ( ± 3·1) with only precipitation. A strong positive correlation was found between the time since the last wetting event and lag time, and between air temperature and hydraulic detention. This indicates that the time between events and seasonal air temperatures are key parameters in the hydraulic performance of cold climate rain gardens. The rain gardens were not used for snow storage areas, and a volume requirement for this was not evaluated in the study. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号