首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Constraining the ages of fluvial terraces is essential to understanding fluvial responses to climate and sea-level changes and estimating uplift/incision. Luminescence dating of sand or silt grains from fluvial terrace deposits in Japan is difficult because sand layers are often absent from gravelly deposits, quartz grains are typically dominated by medium/slow components and/or contaminated by feldspars, and short transport distances and short residence times in riverbeds result in poor bleaching of luminescence signals. Luminescence dating of cobbles may overcome these difficulties, but few studies have applied this technique to fluvial terrace deposits. Here, we examine the utility of luminescence dating applied to three granodiorite cobbles from a late Pleistocene fluvial terrace deposit of the Ara River, Japan. We investigated variations of the infrared stimulated luminescence (IRSL) and post-IR IRSL signals with depth in each cobble. The IRSL and post-IR IRSL signals generally increase with depth, indicating that the cobbles were not completely bleached before deposition. Nonetheless, the IRSL ages of the cobble surfaces (19–17 ka) are consistent with the age of a tephra layer (16–15 ka) at the base of loess deposits overlying the terrace. In contrast, IRSL ages of sand-sized feldspar grains overestimate the depositional age because of incomplete bleaching, whereas silt-sized quartz grains greatly underestimate the depositional age, likely because of the thermal instability of the medium component. Our results demonstrate that luminescence dating of cobbles could provide a better understanding of fluvial systems in which luminescence dating of sand grains is difficult.  相似文献   

2.
A comparative study using quartz optically stimulated luminescence (OSL) and feldspar post-infrared infrared stimulated luminescence (post-IR IRSL) was undertaken on Quaternary fluvial sediments from an unnamed tributary of the Moopetsi River in South Africa. The aim is to assess whether the post-IR IRSL signal can be used to date incompletely bleached sediments. Several post-IR IRSL signals using varying stimulation and preheat temperatures were investigated; of these the post-IR IRSL225 signal was deemed most appropriate for dating because it bleached most rapidly. The feldspar post-IR IRSL225 equivalent dose (De) values from this site are consistently larger than those from quartz OSL, probably due to differences in the bleaching characteristics of the two signals. Additionally, the post-IR IRSL225 De values within a sample showed less variation in precision than the quartz De data, possibly due to greater averaging between grains in the feldspar small aliquots. The agreement between ages based on the OSL and post-IR IRSL225 signals was better for younger samples (<20 ka) than for older ones (>50 ka); the cause of this variation is unclear.  相似文献   

3.
The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated (LM)-OSL analysis revealed the dominance of a slow component. When compared with independent age control provided by two marker tephras, the quartz OSL ages grossly underestimate the depositional age. In contrast, potassium (K)-rich feldspar is a suitable dosimeter when measured using post-IR infrared stimulated luminescence (IRSL) at 225 °C (pIRIR225). Scanning electron microscope (SEM) analyses on the feldspar extracts revealed that the grains are amorphous with small crystalline inclusions; using standard internal dose rate parameters, this would result in a too large dose rate. Dose rates were calculated using the observed grain size of 40 ± 20 μm with an assumed K concentration of 12.5 ± 0.5%. The fading corrected pIRIR225 ages agree well with independent age control, and the sediments of the Katanishi Formation were deposited between 82 ± 6 and 170 ± 16 ka. This study demonstrates that pIRIR dating of feldspar is a powerful chronological tool for the dating of sediments of volcanic origin.  相似文献   

4.
The Wulanmulun site found in 2010 is an important Paleolithic site in Ordos (China), from which lots of stone and bone artifacts and mammalian fossils have been recovered. It was previously dated by radiocarbon and optically stimulated luminescence (OSL) techniques on quartz. To further confirm the reliability of the chronology constructed based on OSL ages and test the applicability of the recently developed pIRIR procedure on sediments from northern China, twenty-four sediment samples (including eolian, lacustrine and fluvio-eolian sands) from the site were determined using the multi-elevated-temperature post-IR IRSL (MET-pIRIR or pIRIR) procedure on potassium feldspar. The results show that the studied samples have two MET-pIRIR De preheat plateaus (280–320 and 340–360 °C), and the bleaching rates of the luminescence signals are associated with sample ages and stimulation temperatures. All the pIRIR ages (7–155 ka) corrected for anomalous fading and residual dose obtained after solar bleaching for 15 h are larger than the corresponding quartz OSL ages (4–66 ka) previously determined, even for the young eolian samples (<10 ka). But the corrected IRSL(50 °C) ages (6–85 ka) are broadly consistent with the quartz ages. It appears that the IRSL(50 °C) ages are more reliable, although this contradicts the previously results obtained by other people. On the other hand, we also obtained an extended age plateau between the stimulation temperatures of 50 and 290 °C in the plot of age versus stimulation temperature (A-T plot) by subtracting different residual doses obtained after different bleaching times. The reliability of the plateau ages requires further investigation. For the sediment samples from this site, quartz should be more suitable for dating than K-feldspar, and the quartz OSL ages of 50–65 ka for its cultural layer should be reliable.  相似文献   

5.
Optically Stimulated Luminescence (OSL) is a well-established Quaternary dating method, which has recently been adapted to application in low-temperature thermochronometry. The Infra-Red Stimulated Luminescence (IRSL) of feldspar, which so far is the most promising target signal in thermochronometry, is unfortunately prone to anomalous fading. The fading of feldspar IRSL is at times not only challenging to measure, but also laborious to incorporate within luminescence growth models. Quantification of IRSL fading is therefore a crucial step in OSL thermochronometry, raising questions regarding (i) reproducibility and reliability of laboratory measurements of fading, as well as (ii) the applicability of existing fading models to quantitatively predict the level of IRSL field saturation in nature. Here we investigate the natural luminescence signal and anomalous fading of IRSL measured at 50 °C (IRSL50) in 32 bedrock samples collected from a variety of lithologies and exhumation settings (Alaska and Norway). We report a large span of IRSL50 fading rates between samples (g2days ranging from ∼0.5 to ∼45%/decade), which further demonstrates (i) a good reproducibility between two common fading measurement protocols, and (ii) the ability of tunnelling models to predict the level of feldspar IRSL50 field saturation in nature. We observe higher IRSL50 fading in feldspar with increasing Ca content, although other factors cannot be dismissed at present. Finally, our dataset confirms that the applicability of feldspar IRSL50 in OSL thermochronometry is limited to rapidly-exhuming settings or warm subsurface environments.  相似文献   

6.
Dating agricultural artefacts such as field walls and clearance cairns using radiocarbon can be challenging, especially since the association with datable material may be poor. Rock surface burial dating using luminescence offers an alternative. Here we report on the luminescence dating of a medieval circular stone-walled enclosure at Sønnebøe, northern Scania, Sweden, using both buried rocks and sediments. Luminescence burial profiles from IRSL signals measured at 50 °C (IR50) indicated significant prior light exposure in 7 of the 8 samples tested (5 granite, 2 felsic gneiss), in some cases multiple exposure burial cycles were indicated. These rock surfaces had apparently been exposed for sufficient time to allow accurate IRSL ages for the most recent burial event. In contrasts, no useful post-IR IRSL profiles were obtained indicating that this signal was not sufficiently reset to allow accurate determination of the burial dose on any of these rocks. IR50 fading corrections (typically ∼50%) were derived by comparing field saturation with that induced in the laboratory. Quartz extracted from sediments surrounding the rocks gave an average measured to given dose ratio of 1.03 ± 0.01 (n = 90), and these sediment samples were then dated using multigrain aliquots; the corresponding feldspar dose recovery ratio obtained using rock samples was 0.98 ± 0.05 (n = 28). A total of 15 ages were derived; 8 quartz OSL ages from the disturbed coarse grained sediments surrounding the structure, and 7 fading corrected IR50 ages from the surfaces of rocks (2–3 mm chips, ∼1 mm thick) used in the construction of the structure itself. The exposure events preserved by the ring enclosure stones unequivocally show wall building taking place at the site between 800 and 300 years ago.  相似文献   

7.
Luminescence dating of late Quaternary sediments in Peru is challenging, especially on the Peruvian coast. Earlier studies have shown that quartz grains often exhibit a thermally unstable, medium signal that caused the underestimation of Optically Stimulated Luminescence (OSL) ages. InfraRed Stimulated Luminescence (IRSL) dating has shown to produce more reliable ages, depending, amongst other factors, on the age model (Central or Minimum Age Model), and the IRSL signal. IRSL dating of geoarchaeological sediments has, however, hardly been carried out, let along validated, against an independent age dataset. This dating approach is, nonetheless, the only promising way to date the geological substrate in which many of Peru's archaeological sites are buried. Peru contains some of the oldest and most important archaeological heritage sites, yet not much is known of the environmental context in which many of its early civilizations prospered. A better understanding of which luminescence method works best could therefore help in a better understanding of the geological-stratigraphical context of many of Peru's sites.To investigate this matter more fully, we compared the luminescence dating results of seven sediment samples from the top layer of the Lima alluvial fan and from geoarchaeological layers of the Maranga Complex (San Miguel, Lima), with an independent dataset of sixteen 14C ages. Our results showed that the quartz OSL ages always underestimated the expected ages due to a signal dominated by medium and slow components, and that the post-IR IRSL225 (pIR IRSL225) and IRSL50 ages of K-feldspars, on basis of the Central Age Model (CAM), always overestimated the expected ages. The Minimum Age Model (MAM) on the other hand, correctly predicted the expected ages for the early Holocene, Lima alluvial fan sediments using the pIR IRSL225 signal of K-feldspars, and the late Holocene, geoarchaeological ages using the IRSL50 signal.  相似文献   

8.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

9.
The palaeo-shorelines around the lakes on the Tibetan Plateau can be used to reconstruct water level variations, which serve as sensitive indicators of hydroclimate change. Extensive studies have been carried out to constrain the Holocene lake level fluctuations by dating shorelines with a variety of methods (e.g., luminescence, 14C, 10Be and U–Th series). In comparison, the timing of the lake level variations during the last glacial and subsequent deglaciation periods has been rarely studied. The driving factors of such changes, therefore, remain elusive. In this study, we performed a detailed luminescence dating investigation on six samples taken from a nearshore sedimentary outcrop in the south of Selin Co basin. The post-IR IRSL signals measured at 225 °C (pIRIR225) on sand-sized K-feldspar grains demonstrated a generally good behavior and yielded reliable chronologies, while the optically stimulated luminescence (OSL) signals of quartz showed systematical age underestimation, which was attributed to anomalous fading. Six pIRIR225 ages ranging from 15 to 10 ka suggested that the lake level of Selin Co during the last deglaciation reached up to 40–45 m high above the modern lake level. In view of the regional precipitation and temperature proxy records, we consider that the glacier meltwater supply has likely been the primary contributor to the lake highstands during the last deglaciation.  相似文献   

10.
This paper reports on the first investigations into the potential of luminescence dating to establish a chronological framework for fluvial processes in the Tisa River Valley in Vojvodina, N Serbia. A total of 18 samples were collected from a terrace exposure near Mužlja, which comprised non-fluvial deposits at the top and fluvial deposits at the base. The luminescence characteristics of sand-sized quartz and potassium feldspar grains were investigated using a single-aliquot regenerative dose (SAR) protocol. The quartz separates exhibit a complex behaviour, making this dosimeter less suited for optical dating. Investigations into the behaviour of infrared stimulated luminescence (IRSL) measured at 50 °C (IR50) from K-rich feldspar extracts showed that preheating in excess of 60 s at 225 °C leads to significant sensitivity changes. The effect of IR stimulation on the thermoluminescence (TL) signal and that of preheating on IRSL intensity were examined; the results are inconclusive with respect to thermal stability, but are not inconsistent with the idea that the data do not reflect depletion of an electron trap. The IR50-signal measured after a preheat of 60 s at 115 °C behaves well in the SAR protocol, although it suffers from anomalous fading. Assuming that the signal is thermally stable, the fading-corrected ages suggest that deposition occurred during the end of the Late Pleniglacial and the early Late Glacial, which is consistent with geological expectations. Our observations demonstrate that IRSL dating of feldspar holds potential for establishing a chronology of fluvial dynamics of the Tisa River in N Serbia. Further methodological investigations are desirable; however, as issues relating to the stability and resetting of the IRSL signal remain to be resolved.  相似文献   

11.
In the present study, we applied the IRSL50°C dating method to both K- and Na-feldspar coarse grains from interglacial coastal deposits in north-eastern Tunisia. We used the yellow IRSL50°C signal of Na-feldspars and the blue IRSL50°C signal of K-feldspars. The key-sites for this study are at El Hajeb (Sahel area) and Dar Oufa (Cap Bon Peninsula). These deposits belong to the “Douira Unit” which has previously been assigned to marine isotope stage (MIS) 7 on the basis of amino acid ratios and chronostratigraphic evidence.In order to assess the reliability of the IRSL50°C ages of the “Douira Unit”, we extended the IRSL dating technique to K- and Na-feldspars from two MIS 5 samples, with independent age control, collected within shallow-marine sands in the Sahel area and on the Jerba island (southern Tunisia).Two protocols of age correction for the observed fading in K- and Na-feldspars have been applied: (1) the Huntley and Lamothe (2001) fading correction and (2) the dose rate correction developed by Lamothe et al. (2003). The fading corrected IRSL ages of the “Douira Unit” and both MIS 5 control samples, measured on K- and Na-feldspars, are in good agreement with their expected ages.  相似文献   

12.
Multiple-aliquot regenerative-dose violet stimulated luminescence (MAR-VSL) dating studies of the Chinese loess-palaeosol sequence in Luochuan using sand- and silt-sized quartz have previously produced inconsistent results; the VSL ages were in agreement with their independent ages up to ∼900 ka for sand-sized quartz, whereas the silt-sized VSL ages underestimated the independent chronology beyond ∼100 ka. Here we therefore evaluate the VSL dose response pattern of sand- (63–100 μm) and silt-sized (4–11 μm) quartz grains from the loess-palaeosol sequence in southern Germany in high resolution but with a limited age range up to ∼160 ka. All the samples studied benefit from good age control provided by reliable quartz optically stimulated luminescence (OSL) ages and fading corrected feldspar post-infrared infrared stimulated luminescence at 225 °C (pIRIR225) ages, which can be used for assessing the validity of the estimated VSL ages. The comparison of the MAR standardised dose response curve (DRC) using regeneration doses up to ∼1000 Gy for both grain size fractions demonstrates that they are almost similar in shape with comparable characteristic saturation doses. The comparison of the natural and laboratory generated DRCs of each grain size reveals that they broadly overlap in the low dose range for both fractions, while in the high dose range the deviation between natural and laboratory DRCs is higher for the silt-sized quartz fraction. It is also shown that the magnitude of the characteristic saturation dose is dependent upon the size of the maximum given dose, especially for the silt-sized quartz. The constructed laboratory standardised DRCs to very high doses (up to ∼6000 Gy) showed continuous signal growth at high doses, particularly in the case of silt-sized quartz grains, thereby confirming our previous observation. The sand-sized quartz has a much less pronounced linear growth component and can therefore be considered more suitable for dating samples with equivalent doses falling on the high dose region of the DRC.  相似文献   

13.
Reliable chronology is critical for reconstructing estuarine delta process. In this study, detailed chronological framework has been performed on a core HPQK01 (52 m in depth) from the central Pearl River delta (PRD) of China. Both quartz OSL and feldspar post-IR IRSL (pIRIR) methods for late Pleistocene sediments, as well as radiocarbon dating for Holocene sediments, were applied to date the core. Results show that quartz OSL ages range from 125 ± 18 ka to 58 ± 6 ka, and that all of them were minimum ages due to the OSL signal saturation. Feldspar pIR200IR290 protocol shows some overestimation in dose recovery test, with the recovered to the given ratio of 1.2, while a ratio of around 1 was obtained for feldspar pIR50IR250 signals. Robust ages have been obtained from feldspar fading corrected pIR50IR250 dating with ages ranging from 150 ± 17 ka to 98 ± 12 ka. AMS 14C results suggest that subtidal-intertidal zone was deposited during the middle Holocene from 8.21 ± 0.19 cal ka BP to 4.99 ± 0.25 cal ka BP. The sedimentology of core HPQK01 record two marine transgressive-regressive cycles. Based on the dating results, the lower fluvial sediment unit (T2) could be correlated to marine isotope stage (MIS) 6, and the lower marine unit (M2) was deposited during MIS 5. A sedimentary hiatus occurred with age range of from MIS 4 to MIS 2. Since middle Holocene, another marine stratum (M1) has been accumulated. Overall, our findings suggest that feldspar pIRIR dating method has the potential to establish the Quaternary chronostratigraphic framework of the PRD for samples with ages within 150 ka.  相似文献   

14.
We report here the results of a feasibility study of luminescence dating of polymineralic volcanic ash. Of the several possible protocols that used different emission bands and different IR stimulation regimes, the post infrared-infrared stimulated luminescence (pIR-IRSL) signal (detected using a violet-blue emission window with stimulation temperature in the region 260–320 °C) provided the most stable signal. This involved, i) identification of the most suitable temperature for pIR-IRSL read out, ii) determination of alpha efficiency and, iii) estimation of anomalous (athermal) fading rate. Anomalous fading rate (g-value in %/decade) of pIR-IRSL signal at 300 °C was 0.0–1.6%/decade and it ranged from 2.4 to 5.2%/decade for IRSL at 50 °C, both preheated to 320 °C. Thus, though more stable, pIR-IRSL signals may fade in nature, and even during laboratory extended irradiation. Of the models for fading correction by Huntley and Lamothe (2001) and Kars et al. (2008), the Kars et al. (2008) model performed better as the natural luminescence intensity was closer to the onset of saturation in the luminescence dose response curve. Our measurements suggest that alpha efficiencies of the pIR-IRSL signals are higher than that of IRSL. Fading corrected pIR-IRSL single aliquot regeneration (SAR) protocol based ages on three of the five volcanic ash beds are in agreement with the expected ages of ∼74 ka, based on geochemical association of the present samples to be the Youngest Toba Tuff (YTT). Other ash samples that gave ages of <24 ka and <37 ka, were inferred to have been in their secondary context, reworked from their original depositional sites. The onset of saturation dose of the pIR-IRSL signal (D0) was ∼330 Gy and this implied a maximum measurable equivalent dose of 660 Gy. The minimum detectable dose was ∼5 Gy. These dose limits correspond to a typical age range of 1–150 ka using the pIR-IRSL signal for volcanic ashes.  相似文献   

15.
The applicability of the post-IR IRSL single-aliquot regenerative-dose protocol (termed pIRIR protocol) has been tested on K-rich feldspar from recent coastal sediment samples (<500 a) from the southern North Sea coast and southern Baltic Sea coast. The most suitable post-IR IRSL (pIRIR) stimulation temperature is found to be 150 °C by using a preheat temperature of 180 °C. For this pIRIR stimulation temperature, a detectable pIRIR signal is obtained and the residual dose is minimized. Furthermore, anomalous fading is found to be negligible in the pIRIR150 signal for our young samples whereas the fading rates for the conventional IRSL signal measured at 50 °C (IRSL50) is between 5 and 7%/decade. However, the pIRIR150 signal bleaches significantly slower compared to the IRSL50, according to bleaching experiments using daylight, solar simulator and IR diodes, although the residual doses of both signals are similar. The laboratory residual doses in perfectly bleached aliquots are variable from sample to sample and vary between 300 ± 170 and 800 ± 460 mGy for the pIRIR150. The precision of the residual dose determination is generally poor and causes large uncertainties on the residual subtracted ages. The laboratory residual doses alone cannot account for the observed overestimation in our two youngest samples (<70 a), indicating that the feldspar signals in these samples were presumably not fully bleached prior to aeolian or beach deposition. However, even if the age uncertainties are large we obtained pIRIR150 ages in agreement with independent age estimates for the two older samples, which are 70 and 390 years old.  相似文献   

16.
Numerical dating of loess is important for Quaternary studies. Recent progress in post-infrared infrared-stimulated luminescence (pIRIR) signals from potassium-rich feldspar has allowed successful dating of Chinese loess beyond the conventional dating limit based on quartz optically stimulated luminescence (OSL) signals. In this study we tested the multiple-aliquot regenerative-dose (MAR) pre-dose multiple-elevated-temperature post-IR IRSL (pMET-pIRIR) procedure on samples from the palaeosol S5 (∼480 ka) and S8 (∼780 ka) layers from the Luochuan and Jingbian sections, respectively. The results show that (1) compared to sensitivity-corrected signal (Lx/Tx), a higher saturation dose is observed for the sensitivity-uncorrected MET-pIRIR signals (Lx), suggesting that MAR is advantageous for dating old samples; (2) negligible fading component can be achieved using the pMET-pIRIR procedure; (3) for the sample from the top of palaeosol S5, De values (1360 + 226/-167 Gy) broadly consistent with expected De (1550 ± 72 Gy) can be obtained using the sensitivity-uncorrected 300 °C MET-pIRIR signal. Our study suggests that a De value of about 1800 Gy may be the maximum dating limit of Chinese loess using the MAR pMET-pIRIR procedure.  相似文献   

17.
Lakes over the inner Tibetan Plateau (TP) are very sensitive to the regional environmental transformations and climate changes. Well-preserved lake sediments around these lakes provide critical geomorphological and sedimentary evidence that can be used to infer the past hydroclimate changes. In this study, a lacustrine section from a sandy shoreline (∼74 m above the modern lake) situated to the northwest of modern Dawa Co in the inner TP was investigated using both luminescence and radiocarbon dating methods. Our results demonstrated: (1) the quartz optically simulated luminescence (OSL) dating yielded much younger ages (∼4 ka) than that of the post-infrared IRSL (pIRIR) dating of the K-feldspar fraction; (2) fading test showed g-values ranging between 1.34 and 4.46%/decade for quartz OSL signals, which is considered to be responsible for the underestimation of the corresponding ages; (3) the AMS 14C age of the charcoal sample from the section is in line with the K-feldspar pIRIR225 ages, confirming the reliability of the pIRIR225 dates and the underestimation of the quartz OSL ages. The anomalous fading of quartz OSL signals and the consequent age underestimation have been reported in several other lakes on the TP, we presented here for the first time firm evidence of the phenomenon with the help of a robust independent control of AMS 14C age of the charcoal. Based on the pIRIR225 and AMS 14C ages, we conclude that Dawa Co underwent a prominent highstand during the early Holocene (∼9–7 ka), which was probably controlled by the large amounts of glacial meltwater input and the increased monsoonal precipitation.  相似文献   

18.
The numerical dating of megaflood sediments is a worldwide challenge, a fact that has impeded a full understanding of Late Quaternary dam-outburst flood processes that occurred along the river courses of the Tibetan Plateau. Optically stimulated luminescence (OSL) dating has been widely used on such sediments. Due to their short transportation distances prior to deposition, the OSL signals of megaflood sediments are often partially bleached, resulting in age overestimations. Here, we report on a comparison of OSL ages obtained using both quartz (4–11 μm FG; 90–125, 180–250 μm CG) and K-feldspar (180–250 μm CG) extracted from sediments taken from the Binghong-Bingnong Neolithic-Bronze Age site on the second Jinshan River terrace (T2), in Yunnan Province, southwestern China. Contrary to previous experience suggesting that CG fractions are usually better bleached than FG fractions prior to deposition, our results showed that the OSL ages for the FG quartz fraction were generally younger than those for the CG fraction. This would suggest that the two fractions may have come from different sources, and may have been subject to different geomorphological processes prior to deposition. FG quartz fractions may be suitable to define the maximum age of sediments located in alpine gorge regions. CG quartz fractions can be used by applying the minimum age model (MAM) to select relatively well-bleached grains yielded ages close to the ‘true’ burial ages of the sediments. The results showed that the post-IR IRSL225 ages of single grain K-feldspar were overestimated by > 3 ka, suggesting K-feldspar may not be suitable dating material for megaflood sediments <30 ka. The OSL dates suggest that the T2 terrace was formed ∼8.4 ka, that aeolian sediments were deposited during ∼2.6–1.5 ka, and that the megaflood event occurred after ∼1.5 ka.  相似文献   

19.
We present a comparative study of quartz OSL, polymineral IRSL at low temperature (50 °C, IR50) and post-IR elevated temperature (290 °C) IRSL (pIRIR290) feldspar dating on nine samples from the Tokaj loess section in NE Hungary (SE Europe). Preheat plateau tests show a drop in quartz OSL De between 160 and 240 °C but above 240 °C a clear De plateau is present. Quartz OSL SAR is shown to be generally appropriate to these samples (recycling, recuperation) but a satisfactory dose recovery result was only obtained when a dose was added to a sample without any prior optical or thermal pre-treatment; this gave a dose recovery ratio of 1.04 ± 0.05 after subtracting the natural dose from the measured dose. The pIRIR290 SAR protocol also results in acceptable dose recovery results for the pIRIR290 signal (1.08 ± 0.01) when a large dose is added to the natural dose. Bleaching experiments suggest a detectable non-bleachable residual pIRIR290 dose of 10 ± 4 Gy. Agreement with quartz OSL ages is best achieved by correcting the IR50 ages for fading; however this is not necessary when using the pIRIR290 signal. With respect to Hungarian Late Quaternary geology our results indicate that the major part of the Tokaj loess has been deposited during MIS 3 (60–24 ka), with periods of soil formation occurring during the onset of MIS 3 (≥58 ka) and between about 35 and 25 ka. Our results also indicate episodic deposition of loess and varying, non-linear sedimentation rates during MIS 3. Proxy analyses in the literature are based on the traditional concept of continuous deposition; in the light of our new data the use of such simple assumptions must be reconsidered.  相似文献   

20.
In this study we test the potential of the elevated temperature infrared stimulated luminescence (IRSL) signals for dating Romanian loess. The recently developed post-IR IRSL protocol is applied to Romanian loess using polymineral fine grains extracted from the loess-palaeosol sequence at Mircea Vodă (SE Romania). This approach is aimed at obtaining an additional age control to examine the age discrepancy obtained from previous optically stimulated luminescence (OSL) studies using different grain-sizes of quartz (4–11 μm and 63–90 μm).Two preheat post-IR IR stimulation temperature combinations were used, 250–225 °C and 325–300 °C, respectively. The signals obtained are documented in terms of dose response curve, laboratory tests and fading. Although both post-IR IRSL signals exhibit small fading rates, dose response characteristics indicate that these rates may be laboratory artefacts. The post-IR IRSL signal stimulated at 300 °C is observed to suffer from dose dependent initial sensitivity changes as both natural and regenerated signals are observed to lie above the saturation level of the dose response curve. Uncorrected age results obtained using both post-IR IRSL signals are in general agreement with previously reported silt-sized quartz OSL ages for samples collected from the uppermost loess unit L1. For older material, the post-IR IRSL signal stimulated at 225 °C is considered to provide reliable age results, in agreement with independent age control available for this sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号