首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sidewall erosion because of rockfalls is one of the most efficient erosional processes in the highest parts of mountain ranges; it is therefore important to quantify sidewall erosion to understand the long-term evolution of mountainous topography. In this study, we analyse how the 10Be concentration of supraglacial debris can be used to quantify sidewall erosion in a glaciated catchment. We first analyse, in a glaciated catchment, the cascade of processes that move a rock from a rockwall to a supraglacial location and propose a quantitative estimate of the number of rockfalls statistically mixed in a supraglacial sand sample. This model incorporates the size of the rockwall, a power law distribution of the size of the rockfalls and the mean glacial transport velocity. In the case of the Bossons glacier catchment (Mont Blanc massif), the 10Be concentrations obtained for supraglacial samples vary from 1.97 ± 0.24 to 23.82 ± 1.68 × 104 atoms g−1. Our analysis suggests that part of the 10Be concentration dispersion is related to an insufficient number of amalgamated rockfalls that does not erase the stochastic nature of the sidewall erosion. In the latter case, the concentration of several collected samples is averaged to increase the number of statistically amalgamated rockfalls. Variable and robust 10Be-derived rockwall retreat rates are obtained for three distinct rockfall zones in the Bossons catchment and are 0.19 ± 0.08 mm year−1, 0.54 ± 0.1 mm year−1 and 1.08 ± 0.17 mm year−1. The mean 10Be retreat rate for the whole catchment (ca. 0.65 mm year−1) is close to the present-day erosion rate derived from other methods. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
We use cosmogenic 10Be concentrations in amalgamated rock samples from active, ice‐cored medial moraines to constrain glacial valley sidewall backwearing rates in the Kichatna Mountains, Alaska Range, Alaska. This dramatic landscape is carved into a small ~65 Ma granitic pluton about 100 km west of Denali, where kilometer‐tall rock walls and ‘cathedral’ spires tower over a radial array of over a dozen valley glaciers. These supraglacial landforms erode primarily by rockfall, but erosion rates are difficult to determine. We use cosmogenic 10Be to measure rockwall backwearing rates on timescales of 103–104 years, with a straightforward sampling strategy that exploits ablation‐dominated medial moraines. A medial moraine and its associated englacial debris serve as a conveyor system, bringing supraglacial rockfall debris from accumulation‐zone valley walls to the moraine crest in the ablation zone. We discuss quantitatively several factors that complicate interpretation of cosmogenic concentrations in this material, including the complex scaling of production rates in very steep terrain, the stochastic nature of the rockfall erosion process, the unmixed nature of the moraine sediment, and additional cosmogenic accumulation during transport of the sediment. We sampled medial moraines on each of three glaciers of different sizes and topographic aspects. All three moraines are sourced in areas with identical rock and similar sidewall relief of ~1 km. Each sample was amalgamated from 25 to 35 clasts collected over a 1‐km longitudinal transect of each moraine. Two of the glaciers yield similar 10Be concentrations (~1·6–2·2 × 104 at/g) and minimum sidewall slope‐normal erosion rates (~0·5–0·7 mm/yr). The lowest 10Be concentrations (8 × 103 at/g) and the highest erosion rates (1·3 mm/yr) come from the largest glacier in the range with the lowest late‐summer snowline. These rates are reasonable in an alpine glacial setting, and are much faster than long‐term exhumation rates of the western Alaska Range as determined by thermochronometric studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Well-dated records of tropical glacier fluctuations are essential for developing hypotheses and testing proposed mechanisms for past climate changes. Since organic material for radiocarbon dating is typically scarce in low-latitude, high-altitude environments, surface exposure-age dating, based on the measurement of in situ produced cosmogenic nuclides, provides much of the chronologic information on tropical glacier moraines. Here, we present a locally calibrated 10Be production rate for a low-latitude, high-altitude site near Quelccaya Ice Cap (∼13.95°S, 70.89°W, 4857 m asl) in the southeastern Peruvian Andes. Using an independent age (12.35 +0.2, −0.02 ka) of the late glacial Huancané IIa moraines based on thirty-four bracketing radiocarbon ages and twelve 10Be concentrations of boulders on the moraines, we determine a local production rate of 43.28 ± 2.69 atoms gram−1 year−1 (at g−1 yr−1). Reference 10Be production rates (i.e., production rates by neutron spallation appropriate for sea-level, high-latitude sites) range from 3.97 ± 0.09 to 3.78 ± 0.09 at g−1 yr−1, determined using scaling after Lal (1991) and Stone (2000) and depending on our assumed boulder surface erosion rate. Since our boulder surface erosion rate estimate is a minimum value, these reference production rates are also minimum values. A secondary control site on the Huancané IIIb moraines suggests that the 10Be production rates are at least as low as, or possibly lower than, those derived from the Huancané IIa moraines. These sea-level, high-latitude production rates are at least 11–15% lower than values derived using the traditional global calibration dataset, and they are also lower than those derived from the late glacial Breque moraine in the Cordillera Blanca of Peru. However, our sea-level, high-latitude production rates agree well with recently published, locally calibrated production rates from the Arctic, New Zealand, and Patagonia. The production rates presented here should be used to calculate 10Be exposure ages in low-latitude, high-altitude locations, particularly in the tropical Andes, and should improve the ability to compare the results of studies using 10Be exposure-age dating with other chronological data.  相似文献   

5.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Although beryllium‐10 (10Be) concentrations in stream sediments provide useful synoptic views of catchment‐wide erosion rates, little is known on the relative contributions of different sediment supply mechanisms to the acquisition of their initial signature in the headwaters. Here we address this issue by conducting a 10Be‐budget of detrital materials that characterize the morphogenetic domains representative of high‐altitude environments of the European Alps. We focus on the Etages catchment, located in the Ecrins‐Pelvoux massif (southeast France), and illustrate how in situ 10Be concentrations can be used for tracing the origin of the sand fraction from the bedload in the trunk stream. The landscape of the Etages catchment is characterized by a geomorphic transient state, high topographic gradients, and a large variety of modern geomorphic domains ranging from glacial environments to scarcely vegetated alluvial plains. Beryllium‐10 concentrations measured in the Etages catchment vary from ~1 × 104 to 4.5 × 105 atoms per gram quartz, while displaying consistent 10Be signatures within each representative morphogenetic unit. We show that the basic requirements for inferring catchment‐wide denudation from 10Be concentration measurements are not satisfied in this small, dynamic catchment. However, the distinct 10Be signature observed for the geomorphic domains can be used as a tracer. We suggest that a terrestrial cosmogenic nuclide (TCN) budget approach provides a valuable tool for the tracing of material origin in basins where the ‘let nature do the averaging’ principles may be violated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The Earth's surface erodes by processes that occur over different spatial and temporal scales. Both continuous, low‐magnitude processes as well as infrequent, high‐magnitude events drive erosion of hilly soil‐mantled landscapes. To determine the potential variability of erosion rates we applied three independent, field‐based methods to a well‐studied catchment in the Marin Headlands of northern California. We present short‐term, basin‐wide erosion rates determined by measuring pond sediment volume (40 years) and measured activities of the fallout nuclides 137Cs and 210Pb (40–50 years) for comparison with long‐term (>10 ka) rates previously determined from in situ‐produced cosmogenic 10Be and 26Al analyses. In addition to determining basin‐averaged rates, 137Cs and 210Pb enable us to calculate point‐specific erosion rates and use these rates to infer dominant erosion processes across the landscape. When examined in the context of established geomorphic transport laws, the correlations between point rates of soil loss from 137Cs and 210Pb inventories and landscape morphometry (i.e. topographic curvature and upslope drainage area) demonstrate that slope‐driven processes dominate on convex areas while overland flow processes dominate in concave hollows and channels. We show a good agreement in erosion rates determined by three independent methods: equivalent denudation rates of 143 ± 41 m Ma?1 from pond sediment volume, 136 ± 36 m Ma?1 from the combination of 137Cs and 210Pb, and 102 ± 25 m Ma?1 from 10Be and 26Al. Such agreement suggests that erosion of this landscape is not dominated by extreme events; rather, the rates and processes observed today are indicative of those operating for at least the past 10 000 years. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Field studies that investigate sediment transport between debris-flow-producing headwaters and rivers are uncommon, particularly in forested settings, where debris flows are infrequent and opportunities for collecting data are limited. This study quantifies the volume and composition of sediment deposited in the arterial channel network of a 14-km2 catchment (Washington Creek) that connects small, burned and debris-flow-producing headwaters (<1 km2) with the Ovens River in SE Australia. We construct a sediment budget by combining new data on deposition with a sediment delivery model for post-fire debris flows. Data on deposits were plotted alongside the slope–area curve to examine links between processes, catchment morphometry and geomorphic process domains. The results show that large deposits are concentrated in the proximity of three major channel junctions, which correspond to breaks in channel slope. Hyperconcentrated flows are more prominent towards the catchment outlet, where the slope–area curve indicates a transition from debris flow to fluvial domains. This shift corresponds to a change in efficiency of the flow, determined from the ratio of median grain size to channel slope. Our sediment budget suggests a total sediment efflux from Washington Creek catchment of 61 × 103 m3. There are similar contributions from hillslopes (43 ± 14 × 103 m3), first to third stream order channel (35 ± 12 × 103 m3) and the arterial fourth to fifth stream order channel (31 ± 17 × 103 m3) to the total volume of erosion. Deposition (39 ± 17 × 103 m3) within the arterial channel was higher than erosion (31 ± 17 × 103 m3), which means a net sediment gain of about 8 × 103 m3 in the arterial channel. The ratio of total deposition to total erosion was 0.44. For fines <63 μm, this ratio was much smaller (0.11), which means that fines are preferentially exported. This has important implications for suspended sediment and water quality in downstream rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para‐glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional‐scale inventory of supra‐glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0·1 km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra‐glacial landslide deposits to be passive strain markers we infer minimum decadal‐scale sediment yields of 190 to 7400 t km–2 yr–1 for a given glacier‐surface cross‐section impacted by episodic rock–slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en‐glacial, sub‐glacial or ice‐proximal sources. We estimate an average minimum para‐glacial erosion rate by large, episodic rock–slope failures at 0·5–0·7 mm yr–1 in the Chugach Mountains over a 50‐yr period, with earthquakes likely being responsible for up to 73% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio‐isostatic surface uplift previously reported from the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Understanding natural soil redistribution processes is essential for measuring the anthropogenic impact on landscapes. Although meteoric beryllium-10 (10Be) has been used to determine erosion processes within the Pleistocene and Holocene, fewer studies have used the isotope to investigate the transport and accumulation of the resulting sediment. Here we use meteoric 10Be in hilltop and valley site soil profiles to determine sediment erosion and deposition processes in the Christina River Basin (Pennsylvania, USA). The data indicate natural erosion rates of 14 to 21 mm 10−3 yr and soil ages of 26 000 to 57 000 years in hilltop sites. Furthermore, valley sites indicate an alteration in sediment supply due to climate change (from the Pleistocene to the Holocene) within the last 60 000 years and sediment deposition of at least 0.5–2 m during the Wisconsinan glaciation. The change in soil erosion rate was most likely induced by changes in geomorphic processes; probably solifluction and slope wash during the cold period, when ice advanced into the mid latitudes of North America. This study shows the value of using meteoric 10Be to determine sediment accumulation within the Quaternary and quantifies major soil redistribution occurred under natural conditions in this region. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
The Tangra Yum Co graben is one of the active structures that accommodate the east‐west extension of the southern Tibetan Plateau and hosts one of the largest Tibetan lakes, which experienced lake‐level changes of ~200 m during the Holocene. In this study, cosmogenic 10Be is employed to: (1) quantify catchment‐wide denudation rates in fault‐bounded mountain ranges adjacent to the Tangra Yum Co graben; (2) date palaeo‐shorelines related to the Holocene lake‐level decline; and (3) determine the age of glacial advances in this region. The fault‐bounded, non‐glaciated mountain range north of Tangra Yum Co – and presumably most other areas around the lake – erode at low rates of 10–70 mm/ka. Owing to the slow erosion of the landscape, the sediments delivered to Tangra Yum Co have high 10Be concentrations. As a consequence, accurate exposure dating of sediment‐covered terraces and beach ridges is difficult, because the pre‐depositional 10Be concentration may exceed the post‐depositional 10Be concentration from which exposure ages are calculated. This difficulty is illustrated by a rather inaccurate 10Be exposure age of 2.3 ± 1.4 ka (i.e. an error of 60%) for a terrace that is located 67 m above the lake. Nevertheless, the age is consistent with luminescence ages for a series of beach ridges and provides further evidence for the decline of the lake level in the late Holocene. At Tangra Yum Co exposure dating of beach ridges via 10Be depth profiles is not feasible, because the pre‐depositional 10Be component in these landforms varies with depth, which violates a basic assumption of this approach. 10Be ages for boulders from two moraines are much older than the early Holocene lake‐level highstand, indicating that melting of glaciers in the mountain ranges adjacent to Tangra Yum Co has not contributed significantly to the lake‐level highstand in the early Holocene. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Little Ice Age lateral moraines represent one of the most important sediment storages and dynamic areas in glacier forelands. Following glacier retreat, simultaneous paraglacial adjustment and vegetation succession affect the moraine slopes. Geomorphic processes (e.g. debris flows, interrill erosion, gullying, solifluction) disturb and limit vegetation development, while increasing vegetation cover decreases geomorphic activity. Thus, feedbacks between geomorphic and vegetation dynamics strongly control moraine slope development. However, the conditions under which these biogeomorphic feedbacks can occur are insufficiently understood and major knowledge gaps remain. This study determines feedback conditions through the analysis of geomorphic and vegetation data from permanent plots in the Turtmann glacier foreland, Switzerland. Results from multivariate statistical analysis (i) confirm that Dryas octopetala L. is an alpine ecosystem engineer species which influences geomorphic processes on lateral moraines and thereby controls ecosystem structure and function, and (ii) demonstrate that biogeomorphic feedbacks can occur once geomorphic activity sufficiently decreases for D. octopetala to establish and cross a cover threshold. In the subsequent ecosystem engineering process, the dominant geomorphic processes change from flow and slide to bound solifluction. Increasing slope stabilization induces a decline in biogeomorphic feedbacks and the suppression of D. octopetala by shrubs. We conceptualize this relationship between process magnitude, frequency and species resilience and resistance to disturbances in a ‘biogeomorphic feedback window’ concept. Our approach enhances the understanding of feedbacks between geomorphic and alpine vegetation dynamics on lateral moraine slopes and highlights the importance of integrating geomorphic and ecological approaches for biogeomorphic research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Chronologies of glacial advances during the last glacial period in the Nyainqentanglha mountain range may provide constraints on the past climate in a transition zone of the Asian monsoon.We present 15 new10Be exposure ages from two moraines in the Payuwang valley,on the north slope of the range.The inner moraine has exposure ages ranging from 18.0±1.7 to 30.6±2.8 ka(n=10),with a mean age of 23.8±4.0 ka,corresponding to the global Last Glacial Maximum(LGM).The outer moraine yields exposure ages ranging from 18.0±1.6 to 39.9±3.7 ka(n=5).Evidence for weathering leads us to view the oldest age as a minimum age,placing moraine formation during MIS3.Chronologies from the last glacial period from south slope of the Nyainqentanglha support this interpretation.Thus,there appears to have been a local LGM(LLGM)during MIS3 and a more limited glacial advance during the global LGM.Glacial advances during MIS3 in the Nyainqentanglha may correlate with millennial-scale climate change(Heinrich events).  相似文献   

15.
Remote mapping and measurement of surface processes at high spatial resolution is among the frontiers in Earth surface process research. Remote measurements that allow meter‐scale mapping of landforms and quantification of landscape change can revolutionize the study of landscape evolution on human timescales. At Mill Gulch in northern California, USA, an active earthflow was surveyed in 2003 and 2007 by airborne laser swath mapping (ALSM), enabling meter‐scale quantification of landscape change. We calculate four‐year volumetric flux from the earthflow and compare it to long‐term catchment average erosion rates from cosmogenic radionuclide inventories from adjacent watersheds. We also present detailed maps of changing features on the earthflow, from which we can derive velocity estimates and infer dominant process. These measurements rely on proper digital elevation model (DEM) generation and a simple surface‐matching technique to align the multitemporal data in a manner that eliminates systematic error in either dataset. The mean surface elevation of the earthflow and an opposite slope that was directly influenced by the earthflow decreased 14 ± 1 mm/yr from 2003 to 2007. By making the conservative assumption that these features were the dominant contributor of sediment flux from the entire Mill Gulch drainage basin during this time interval, we calculate a minimum catchment‐averaged erosion rate of 0·30 ± 0·02 mm/yr. Analysis of beryllium‐10 (10Be) concentrations in fluvial sand from nearby Russian Gulch and the South Fork Gualala River provide catchment averaged erosion rates of 0·21 ± 0·04 and 0·23 ± 0·03 mm/yr respectively. From translated landscape features, we can infer surface velocities ranging from 0·5 m/yr in the wide upper ‘source’ portion of the flow to 5 m/yr in the narrow middle ‘transport’ portion of the flow. This study re‐affirms the importance of mass wasting processes in the sediment budgets of uplifting weak lithologies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
We examine the sensitivity of 10Be concentrations (and derived denudation rates), to debris-flow and anthropogenic perturbations in steep settings of the Eastern Alps, and explore possible relations with structural geomorphic connectivity. Using cosmogenic 10Be as a tracer for functional geomorphic connectivity, we conduct sampling replications across four seasons in Gadria, Strimm and Allitz Creek. Sampling sites encompass a range of structural connectivity configurations, including the conditioning of a sackung, all assessed through a geomorphometric index (IC). By combining information on contemporary depth of erosion and sediment yield, disturbance history and post-LGM (Last Glacial Maximum) sedimentation rates, we constrain the effects of debris-flow disturbance on 10Be concentrations at the Gadria sites. Here, we argue that bedrock weakening imparted by the sackung promotes high depth of erosion. Consequently, debris flows recruit sediment beyond the critical depth of spallogenic production (e.g., >3 m), which in turn, episodically, due to predominantly muogenic production pathways, lowers 10Be concentration by a factor of 4, for at least 2 years. In contrast, steady erosion in Strimm Creek yields very stable 10Be concentrations through time. In Allitz Creek, we observe two- to fourfold seasonal fluctuations in 10Be concentrations, which we explain as the combined effects of water diversion and hydraulic structures on sediment mixing. We further show that 10Be concentration correlates inversely with the IC index, where sub-basins characterized by high concentrations (long residence times) exhibit low IC values (structurally disconnected) and vice versa, implying that, over millennial time scales a direct relation exists between functional and structural connectivity, and that the IC index performed as a suitable metric for structural connectivity. The index performs comparably better than other metrics (i.e., mean slope and mean normalized channel steepness index) previously used to assess topographic controls on denudation rates in active unglaciated ranges. In terms of landscape evolution, we argue that the sackung, by favouring intense debris-flow activity across the Holocene, has aided rapid postglacial reshaping of the Gadria basin, which currently exhibits a topographic signature characteristic of unglaciated debris-flow systems. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Cosmogenic 10Be concentrations in exposed bedrock surfaces and alluvial sediment in the northern Flinders Ranges reveal surprisingly high erosion rates for a supposedly ancient and stable landscape. Bedrock erosion rates increase with decreasing elevation in the Yudnamutana Catchment, from summit surfaces (13·96 ± 1·29 and 14·38 ± 1·40 m Myr?1), to hillslopes (17·61 ± 2·21 to 29·24 ± 4·38 m Myr?1), to valley bottoms (53·19 ± 7·26 to 227·95 ± 21·39 m Myr?1), indicating late Quaternary increases to topographic relief. Minimum cliff retreat rates (9·30 ± 3·60 to 24·54 ± 8·53 m Myr?1) indicate that even the most resistant parts of cliff faces have undergone significant late Quaternary erosion. However, erosion rates from visibly weathered and varnished tors protruding from steep bedrock hillslopes (4·17 ± 0·42 to 14·00 ± 1·97 m Myr?1) indicate that bedrock may locally weather at rates equivalent to, or even slower than, summit surfaces. 10Be concentrations in contemporary alluvial sediment indicate catchment‐averaged erosion at a rate dominated by more rapid erosion (22·79 ± 2·78 m Myr?1), consistent with an average rate from individual hillslope point measurements. Late Cenozoic relief production in the Yudnamutana Catchment resulted from (1) tectonic uplift at rates of 30–160 m Myr?1 due to range‐front reverse faulting, which maintained steep river gradients and uplifted summit surfaces, and (2) climate change, which episodically increased both in situ bedrock weathering rates and frequency–magnitude distributions of large magnitude floods, leading to increased incision rates. These results provide quantitative evidence that the Australian landscape is, in places, considerably more dynamic than commonly perceived. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding the extent to which local factors, including bedrock and structure, govern catchment denudation in mountainous environments as opposed to broader climate or tectonic patterns provides insight into how landscapes evolve as sediment is generated and transported through them, and whether they have approached steady-state equilibrium. We measured beryllium-10 (10Be) concentrations in 21 sediment samples from glaciated footwall and hanging wall catchments, including a set of nested catchments, and 12 bedrock samples in the Puga and Tso Morari half-grabens located in the high-elevation, arid Zanskar region of northern India. In the Puga half-graben where catchments are underlain by quartzo-feldspathic gneissic bedrock, bedrock along catchment divides is eroding very slowly, about 5 m/Ma, due to extreme aridity and 10Be concentrations in catchment sediments are the highest (~60–90 × 105 atoms/g SiO2) as colluvium accumulates on hillslopes, decoupled from their ephemeral streams. At Puga, 10Be concentrations and the average erosion rates of a set of six nested catchments demonstrate that catchment denudation is transport-limited as sediment stagnates on lower slopes before reaching the catchment outlet. In the Tso Morari half-graben, gneissic bedrock is also eroding very slowly but 10Be concentrations in sediments in catchments underlain by low grade meta-sedimentary rocks, are significantly lower (~10–35 × 105 atoms/g SiO2). In these arid, high-elevation environments, 10Be concentrations in catchment sediments have more to do with bedrock weathering and transport times than steady-state denudation rates. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
A combination of numerical analysis and 10Be concentrations measured in sediment samples from the high‐relief Torrente catchment, southern Spain, allows us to investigate the sampling requirements for determining erosion rates using cosmogenic nuclides in high‐relief, landslide‐dominated terrain. We use simple modelling to quantify the effect of particle spalling and/or landsliding on erosion rates determined using a cosmogenic in‐situ produced isotope. Analytical results show that the cosmogenic nuclide concentration of a surface experiencing regular detachment of a grain or block may be considered to be in steady state, and ‘in‐situ’ erosion rates estimated, when an appropriate number of spatially independent samples are amalgamated. We present equations that enable calculation of the number of bedrock samples that must be amalgamated for the estimation of mean erosion rates on an outcrop experiencing regular detachment of a grain or chip of thickness L every T years. Our findings confirm that mean catchment erosion rates may be reliably estimated from 10Be concentrations in fluvial sediment in high‐relief rapidly eroding terrain. These catchment‐wide integrated erosion rates can be calculated where erosion is primarily accomplished through shallow (<3 m) spalling processes; where deep‐seated (>3 m) landslides are the dominant mode of erosion only minimum erosion rates can be determined. Lastly, we present erosion rate measurements from the Torrente catchment that reveal variation of two orders of magnitude (0·03–1·6 m ka?1) quantifying the high degree of spatial variation in erosion rates expected within rapidly uplifting catchments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号