首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 123 毫秒
1.
Thunderstorms and the lightning that they produce are inherently interesting phenomena that have intrigued scientists and mankind in general for many years. The study of thunderstorms has rapidly advanced during the past century and many efforts have been made towards understanding lightning, thunderstorms and their consequences. Recent observations of optical phenomena above an active lightning discharge along with the availability of modern technology both for data collection and data analysis have renewed interest in the field of thunderstorms and their consequences in the biosphere. In this paper, we review the electrification processes of a thunderstorm, lightning processes and their association with global electric circuit and climate. The upward lightning discharge can cause sprites, elves, jets, etc. which are together called transient luminous events. Their morphological features and effects in the mesosphere are reviewed. The wide spectrum of electromagnetic waves generated during lightning discharges couple the lower atmosphere with the ionosphere/magnetosphere. Hence various features of these waves from ULF to VHF are reviewed with reference to recent results and their consequences are also briefly discussed.  相似文献   

2.
Sprites are newly discovered optical emissions in the mesosphere over large thunderstorms. This paper is the observational summary of winter sprites in the Hokuriku area of Japan and their parent lightning in the winter of 2004/2005, by using the coordinated optical and electromagnetic (VHF and ELF) measurements in Japan. As the results of optical observations at two stations, we have found that this campaign has yielded a variety of sprite shapes; V-angle shaped structures have been often observed (25%) in addition to columnar structures familiar for us. All of the sprite events are found to be associated with +CG lightning, as seen from the macroscopic information by ELF data at Moshiri. However, examining the microscopic properties of parent lightning as seen from the VHF SAFIR lightning detection network, has suggested very complicated characteristics of parent lightning discharges inducing sprites, as compared with the ELF data. One half of the sprite events are also found to be associated with +CG by the SAFIR observation, but another half has yielded rather new results as compared with earlier results. Four events are definitely associated with -CG and the remaining three events, inter-cloud flashes. The overall picture for Japanese winter sprites and their parent lightning discharges, is significantly different from that for the summer-time, continental sprites. This is indicative of complexity of winter lightning in the Hokuriku area of Japan and this would provide new information on the sprite generation mechanism.  相似文献   

3.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges.A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

4.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges. A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

5.
时变的准三维“红闪”电场模式研究   总被引:7,自引:1,他引:7       下载免费PDF全文
利用数值模拟的方法,研究了雷暴放电后,由雷暴电荷、感应电荷和晴天大气的背景电荷共同产生的准静电场(Quasi electrostatic field, 简称QEF)的时变过程,以及准静电场对中性大气的加热和电离. 结果表明: 在考虑电离层电势和晴天大气背景电场的影响后,时变的准三维的准静电场(QEF)模式能较好地解释“红闪”(Red sprites)的时空特征,特别是能模拟出“红闪”中的一种——“闪晕”(sprite halo)向上弯曲的空间结构.  相似文献   

6.
During the northern hemisphere winter of 2005–2006, transient luminous events (TLEs) known as ‘sprites’ and ‘elves’ were imaged over thunderstorm cells in the eastern Mediterranean. Simultaneously, extremely low frequency (ELF) data (ELF: 3–3000 Hz) were recorded at two observation stations in Israel and Hungary in order to qualify and quantify parameters of the parent lightning discharge associated with the transient optical emissions in the upper atmosphere. In this study, we found that for 87% (Israel) and 77% (Hungary) of optically observed TLEs an intense ELF transient event was recorded. These stations are located some 500 and 2100 km, respectively, from the region of the TLEs. All ELF transients that were associated with TLEs were caused by lightning discharges with positive polarity. Calculation of the charge moment change showed values between 600 and 2800 C km with a peak around 1000 C km. Additionally, the time delay between the +CG and ensuing sprite was 76±34 ms and it was displaced up to 50 km from its parent CG.One of our objectives in the present study was to characterize, based on the ELF radiation from lightning, the electromagnetic (EM) waveforms of the lightning discharges which generate TLEs in the time and frequency domains, and to compare them with other lightning discharges occurring in the same thunderstorm cell at approximately the same time, but which did not produce TLEs. The survey for a typical EM waveform showed no unique ELF signature for lightning discharges associated with either sprites or elves.  相似文献   

7.
8.
青藏高原那曲地区雷电特征初步分析   总被引:32,自引:3,他引:29       下载免费PDF全文
通过对2002年夏季青藏高原那曲地区雷暴过程及闪电观测资料的初步分析,发现该地区雷暴电荷结构具有多样性和复杂性,地闪明显偏少. 对高原地闪的一些基本特征参量的统计分析表明,无论正地闪还是负地闪梯级先导前都具有持续时间较长的云内放电过程,地闪以单次回击为主. 与中低纬度地区相比,高原地闪中正地闪比例明显要高,为33髎;负地闪为67髎;正、负地闪回击后常常伴随短时间的连续电流.  相似文献   

9.
The correlation between atmospheric gravity waves(GWs) and Transient Luminous Events(TLEs) has been poorly studied using both synchronous observations and numerical simulations. To investigate the modulation effects of GWs on TLEs,a troposphere-mesosphere quasi-electrostatic field model is developed in three-dimensional Cartesian coordinates, and the effects of GW perturbations on the initiation and optical emissions of sprite halos are simulated using the model. Simulation results indicate that the atmospheric density at lower ionosphere altitudes becomes inhomogeneous due to GW perturbations, and sprite halos tend to initiate in the GW troughs due to the lower electric breakdown threshold. GW perturbations cause the deformation of sprite halos, strong luminous regions distribute mainly along the GW troughs while optical intensities along the GW peaks is relatively weak. Larger GW perturbations lead to more pronounced deformation of sprite halos, however, stronger lightning discharges in the troposphere result in less optical perturbations of sprite halos. The observed luminous intensities and optical morphology of sprite halos are also affected by the observing orientations and the lightning polarities.  相似文献   

10.
The measurement of unusual winter sprites in the Hokuriku area (Japan Sea side) was performed as a primary target of the 2006/2007 winter campaign by means of coordinated optical and extremely low frequency (ELF)/very high-frequency (VHF) electromagnetic observations. We have also added the same observations for the sprites in the Pacific Ocean, to be compared with the characteristics of Hokuriku sprites. The following results have emerged from this campaign: (i) the predominance of column sprites in winter has been confirmed not only for the Hokuriku area but also in the Pacific Ocean (with the probability just above 60%), (ii) carrots are much more frequently observed in the Pacific Ocean (with a probability of ~28%) than in the Hokuriku area (~16%), (iii) a very unique property of Hokuriku sprites is the surprisingly long delay (average ~90 ms) of sprites from their parent lightning flashes and the delays for carrots and columns exhibit some significant difference (80 ms for columns and 100 ms for carrots) and (iv) the time delay of Pacific Ocean sprites is much shorter (~43 ms average) than that at Hokuriku, but there is no remarkable difference in delay between carrots and columns. Finally we discussed the importance of time delay studies to understand sprite generations and their parent lightning discharges, because the difference of time delays on the Japan Sea side and in the Pacific Ocean are thought to be causally related to the parameters of parent thunderstorms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号