首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杜永峰  黄小宁  李慧 《地震工程学报》2018,40(5):879-882,896
利用基于性能的结构可靠度分析方法,对基础隔震钢筋混凝土框剪结构进行分析研究。选取20条实际地震动记录,以0.2g为步长对结构地震动参数PGA进行调幅后,建立了140个结构-地震动样本空间。选取上部结构的最大层间位移角、隔震层位移为量化指标,对每一个样本进行动力非线性时程分析后,将结构响应进行统计得到结构在各地震动强度下超越极限破坏状态的概率,将其绘制成基础隔震钢筋混凝土框剪结构的易损性曲线并利用整体可靠度方法分析结构发生倒塌的可靠度指标。该方法直观地反映了结构发生倒塌的概率,为结构的地震损失评估提供依据。  相似文献   

2.
以某典型的20层钢筋混凝土框架剪力墙结构作为研究对象,研究基于性能的RC框架剪力墙结构易损性分析方法。首先选择合适的地震动记录,以0.2g为步长进行调幅后,建立300个结构-地震动样本空间,并确定结构损伤指标和性能参数;然后应用增量动力分析方法计算结构的地震动力响应,选择基本周期加速度反应谱为地震动参数,以研究结构反应的不确定性,并深入分析地震动参数与结构地震需求参数的关系;在此基础上,建立该结构基于加速度反应谱的易损性曲线进行结构易损性分析与评估。结果表明:随着地震动强度的增大,IDA曲线由单调增加变为非单调增加,分位曲线(16%,50%和84%)可以准确地衡量结构的性能;框剪结构在地震作用下的抗震性能表现良好,随着地震强度的增长,各性能超越概率大小的增长速度是不同的。  相似文献   

3.
Processing Italian damage data to derive typological fragility curves   总被引:4,自引:0,他引:4  
Typological fragility curves have been derived from post-earthquake survey data on building damage, collected in the areas affected by the most relevant Italian earthquakes of the last three decades. A complex and time consuming codification and reinterpretation work has been done on a set of about 150,000 survey building records, in order to define empirical damage probability matrices for several building typologies, characteristic of the Italian building stock. The obtained data have then been processed by advanced nonlinear regression methods in order to derive typological fragility curves. These curves, organised in five damage levels, provide useful information both for relative comparisons among typologies and for seismic risk analyses at different scales. By combining hazard definitions, fragility curves and inventory data, complete earthquake risk scenario studies can be performed, but even the single convolution of hazard and fragility allows to obtain typological risk maps, both for single damage state definitions and for concise average loss parameters. The very high potential of these results is shown by some applications reported in the paper.  相似文献   

4.
This article describes the interdependency between several seismic acceleration parameters and the behavior of the reinforced concrete frame structures in the form of correlation coefficients. The structural behavior is expressed in form of overall structural damage indices. After the numerical evaluation of several seismic parameters, a nonlinear dynamic analysis is carried out to provide the total damage status of a structure. The aim is to select those, which have drastic influence on structural damage. Furthermore, the design philosophy of aseismic codes can be verified. The attention is focussed on the earthquake acceleration time histories of the worldwide well-known sites with a strong seismic activity.  相似文献   

5.
Fragility curves of concrete bridges retrofitted by column jacketing   总被引:1,自引:0,他引:1  
The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans’ bridges not retrofitted by column jacketing. In this respect, this study represents results of fragility curve development for two (2) sample bridges typical in southern California, strengthened for seismic retrofit by means of steel jacketing of bridge columns. Monte Carlo simulation is performed to study nonlinear dynamic responses of the bridges before and after column retrofit. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. The sixty (60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agcncy (FEMA) SAC (SEAOC-ATC-CUREe) steel project are used for the dynamic analysis of the bridges. The improvement in the fragility with steel jacketing is quantified by comparing fragility curves of the bridge before and after column retrofit. In this first attempt to formulate the problem of fragility enhancement, the quantification is made by comparing the median values of the fragility curves before and after the retrofit. Under the hypothesis that this quantification also applies to empirical fragility curves developed on the basis of Northridge earthquake damage, the enhanced version of the empirical curves is developed for the ensuing analysis to determine the enhancement of transportation network performance due to the retrofit. Supported by: MCEER/FHWA under Contract No.DTFH 61-98-C-00094 and Caltrans under Contract No.59A0304  相似文献   

6.
基于“强柱弱梁”的屈服机制,依据能量平衡方法设计了某6层RC框架结构,采用震级-震中距条带地震动记录选取方法,选取12条随机地震动,利用Perform-3D有限元分析软件对结构进行增量动力(IDA)分析,得到了结构的地震易损性曲线、破坏状态概率曲线以及结构破坏概率矩阵。分析结果表明:该方法设计的结构能够形成预设的“强柱弱梁”屈服机制,可以保证结构中梁充分参与耗能,同时结构具有较强的抗倒塌能力,可以满足“小震不坏,中震可修,大震不倒”的性能要求。  相似文献   

7.
The use of artificial neural networks in the general framework of a performance-based seismic vulnerability evaluation for earth retaining structures is presented. A blockwork wharf-foundation-backfill complex is modeled with advanced nonlinear 2D finite difference software, wherein liquefaction occurrence is explicitly accounted for. A simulation algorithm is adopted to sample geotechnical input parameters according to their statistical distribution, and extensive time histories analyses are then performed for several earthquake intensity levels. In the process, the seismic input is also considered as a random variable. A large dataset of virtual realizations of the behavior of different configurations under recorded ground motions is thus obtained, and an artificial neural network is implemented in order to find the unknown nonlinear relationships between seismic and geotechnical input data versus the expected performance of the facility. After this process, fragility curves are systematically derived by applying Monte Carlo simulation on the obtained correlations. The novel fragility functions herein proposed for blockwork wharves take into account different geometries, liquefaction occurrence and type of failure mechanism. Results confirm that the detrimental effects of liquefaction increase the probability of failure at all damage states. Moreover, it is also demonstrated that increasing the base width/height ratio results in higher failure probabilities for the horizontal sliding than for the tilting towards the sea.  相似文献   

8.
Fragility curves are generally developed using a single parameter to relate the level of shaking to the expected structural damage. The main goal of this work is to use several parameters to characterize the earthquake ground motion. The fragility curves will, therefore, become surfaces when the ground motion is represented by two parameters. To this end, the roles of various strong‐motion parameters on the induced damage in the structure are compared through nonlinear time‐history numerical calculations. A robust structural model that can be used to perform numerous nonlinear dynamic calculations, with an acceptable cost, is adopted. The developed model is based on the use of structural elements with concentrated nonlinear damage mechanics and plasticity‐type behavior. The relations between numerous ground‐motion parameters, characterizing different aspects of the shaking, and the computed damage are analyzed and discussed. Natural and synthetic accelerograms were chosen/computed based on a consideration of the magnitude‐distance ranges of design earthquakes. A complete methodology for building fragility surfaces based on the damage calculation through nonlinear numerical analysis of multi‐degree‐of‐freedom systems is proposed. The fragility surfaces are built to represent the probability that a given damage level is reached (or exceeded) for any given level of ground motion characterized by the two chosen parameters. The results show that an increase from one to two ground‐motion parameters leads to a significant reduction in the scatter in the fragility analysis and allows the uncertainties related to the effect of the second ground‐motion parameter to be accounted for within risk assessments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A nonlinear hysteretic model for the response and local damage analyses of reinforced concrete shear frames subject to earthquake excitation is proposed, and, the model is applied to analyse midbroken reinforced concrete (RC) structures due to earthquake loads. Each storey of the shear frame is represented by a Clough and Johnston hysteretic oscillator with degrading elastic fraction of the restoring force. The local damage is numerically quantified in the domain [0,1] using the maximum softening damage indicators which are defined in closed form based on the variation of the eigenfrequency of the local oscillators due to the local stiffness and strength deterioration. The proposed method of response and damage analyses is illustrated using a sample 5 storey shear frame with a weak third storey in stiffness and/or strength subject to sinusoidal and simulated earthquake excitations for which the horizontal component of the ground motion is modeled as a stationary Gaussian stochastic process with Kanai-Tajimi spectrum, multiplied by an envelope function.  相似文献   

10.
Worldwide experience repeatedly shows that damages in structures caused by earthquakes are highly dependent on site condition and epicentral distance. In this paper, a 21-storey shear wall-structure built in the 1960s in Hong Kong is selected as an example to investigate these two effects. Under various design earthquake intensities and for various site conditions, the fragility curves or damage probability matrix of such building is quantified in terms of the ductility factor, which is estimated from the ratio of storey yield shear to the inter-storey seismic shear. For high-rise buildings, a higher probability of damage is obtained for a softer site condition, and damage is more severe for far field earthquakes than for near field earthquakes. For earthquake intensity of VIII, the probability of complete collapse (P) increases from 1 to 24% for near field earthquakes and from 1 to 41% for far field earthquakes if the building is moved form a rock site to a site consisting a 80 m thick soft clay. For intensity IX, P increases from 6 to 69% for near field earthquake and from 14 to 79% for far field earthquake if the building is again moved form rock site to soft soil site. Therefore, site effect is very important and not to be neglected. Similar site and epicentral effects should also be expected for other types of high-rise structures.  相似文献   

11.
Fragility curves express the probability of structural damage due to earthquakes as a function of ground motion indices, e.g., PGA, PGV. Based on the actual damage data of highway bridges from the 1995 Hyogoken‐Nanbu (Kobe) earthquake, a set of empirical fragility curves was constructed. However, the type of structure, structural performance (static and dynamic) and variation of input ground motion were not considered to construct the empirical fragility curves. In this study, an analytical approach was adopted to construct fragility curves for highway bridge piers of specific bridges. A typical bridge structure was considered and its piers were designed according to the seismic design codes in Japan. Using the strong motion records from Japan and the United States, non‐linear dynamic response analyses were performed, and the damage indices for the bridge piers were obtained. Using the damage indices and ground motion indices, fragility curves for the bridge piers were constructed assuming a lognormal distribution. The analytical fragility curves were compared with the empirical ones. The proposed approach may be used in constructing the fragility curves for highway bridge structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Fragility functions are commonly used in performance‐based earthquake engineering for predicting the damage state of a structure subjected to an earthquake. This process often involves estimating the structural damage as a function of structural response, such as the story drift ratio and the peak floor absolute acceleration. In this paper, a new framework is proposed to develop fragility functions to be used as a damage classification/prediction method for steel structures based on a wavelet‐based damage sensitive feature (DSF). DSFs are often used in structural health monitoring as an indicator of the damage state of the structure, and they are easily estimated from recorded structural responses. The proposed framework for damage classification of steel structures subjected to earthquakes is demonstrated and validated with a set of numerically simulated data for a four‐story steel moment‐resisting frame designed based on current seismic provisions. It is shown that the damage state of the frame is predicted with less variance using the fragility functions derived from the wavelet‐based DSF than it is with fragility functions derived from an alternate acceleration‐based measure, the spectral acceleration at the first mode period of the structure. Therefore, the fragility functions derived from the wavelet‐based DSF can be used as a probabilistic damage classification model in the field of structural health monitoring and an alternative damage prediction model in the field of performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
针对目前RC框架结构地震易损性分析中整体损伤模型研究的薄弱性以及广泛采用的层间位移角方法不能准确反应结构在地震作用下损伤机理的现状,本文基于现有损伤模型的对比分析,提出了一种较准确反映地震破坏机理同时便于应用的最大变形和滞回耗能非线性组合的双参数损伤模型。以8层RC框架结构为例,进行50条地震波作用下的结构增量动力分析,分别绘制了变形和能量2种单参数模型以及牛荻涛模型和本文模型两种双参数模型的结构损伤曲线与易损性曲线,并进行了模型的对比分析和检验评估。分析结果表明:仅以层间位移角作为结构整体损伤指标会高估结构的抗倒塌性能,仅以能量作为结构整体损伤指标会低估结构损伤的超越概率。本文模型能较好地平衡最大变形和累积损伤对结构损伤的影响程度。  相似文献   

14.
On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the ‘strong column, weak beam’ design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.  相似文献   

15.
梁丹  梁兴文 《地震工程学报》2015,37(4):1060-1065,1072
选取按照现行规范设计的既有建筑进行有限元建模,考虑地震动的不确定性对其进行大量增量动力分析(IDA),得到模型的IDA曲线簇。在此基础上对其进行地震需求概率分析和概率抗震能力分析,拟合得到结构的易损性曲线,据此对结构的倒塌概率进行定量评估,并比较基于非线性分析与性能评估软件PERFORM-3D的纤维模型和塑性铰模型的分析结果。结果表明:按照我国现行规范设计的钢筋混凝土(RC)框架结构,在预期的罕遇地震作用下倒塌概率较小,可满足"大震不倒"的要求;基于PERFORM-3D的截面纤维模型所得的RC框架结构,经非线性分析所得的倒塌概率相对保守,安全储备更高。  相似文献   

16.
This paper describes statistical procedures for developing earthquake damage fragility functions. Although fragility curves abound in earthquake engineering and risk assessment literature, the focus has generally been on the methods for obtaining the damage data (i.e., the analysis of structures), and little emphasis is placed on the process for fitting fragility curves to this data. This paper provides a synthesis of the most commonly used methods for fitting fragility curves and highlights some of their significant limitations. More novel methods are described for parametric fragility curve development (generalized linear models and cumulative link models) and non‐parametric curves (generalized additive model and Gaussian kernel smoothing). An extensive discussion of the advantages and disadvantages of each method is provided, as well as examples using both empirical and analytical data. The paper further proposes methods for treating the uncertainty in intensity measure, an issue common with empirical data. Finally, the paper describes approaches for choosing among various fragility models, based on an evaluation of prediction error for a user‐defined loss function. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The seismometer network of the Japanese expressway system was enhanced following the 1995 Kobe earthquake. Based on earthquake information from the instruments of the seismometer network, a traffic control is performed directly after the event because of the potential for damage to expressway structures. Expressways serve as vital trunk lines of transportation and are important for the restoration of damage-stricken areas. Therefore, earthquake-induced damage to expressway structures should be estimated as soon as possible. Expressway embankments were seriously damaged during recent earthquakes, such as the 2004 Niigata Chuetsu earthquake. The present study constructs the fragility curves of expressway embankments in Japan in order to estimate the damage distribution immediately after an earthquake. Damage datasets for expressways are compiled for the 2003 Northern-Miyagi earthquake, the 2003 Tokachi-oki earthquake, the 2004 Niigata Chuetsu earthquake, and the 2007 Niigata Chuetsu-oki earthquake. The spatial distributions of the peak ground velocity (PGV) are estimated for these four earthquakes in order to evaluate the relationship between the damage ratio of expressway embankments and the PGV. Statistical analysis is then conducted in order to draw the fragility curves for expressway embankments. Based on the fragility curves, major damage that disrupts ordinary expressway traffic may occur when the peak ground velocity exceeds approximately 35.0 cm/s. The fragility curves constructed in the present study are helpful for predicting the damage distribution on expressways soon after an earthquake, which enables efficient traffic control and rapid disaster response.  相似文献   

18.
考虑冲刷作用效应桥梁桩基地震易损性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
冲刷造成桩周土体的剥蚀将会削弱土体对桩基的侧向支撑能力,冲刷效应会对桥梁桩基的地震易损性产生影响,因此有必要对冲刷和地震共同作用下桥梁桩基的易损性进行研究。利用SAP2000软件建立三维桥梁有限元模型,通过非线性时程分析得到桥梁桩基地震响应峰值。采用概率性地震需求分析方法,建立不同冲刷深度下桥梁桩基地震易损性模型,在地震易损性函数假设为对数正态分布函数的基础上,通过回归分析得到概率模型中的参数,进而得到不同冲刷深度下桥梁桩基在不同破坏状态所对应的地震易损性曲线,并分析冲刷深度对桩基破坏概率的影响。研究结果表明:随着冲刷深度的增加,桥梁桩基在地震作用下的破坏概率显著增加。  相似文献   

19.
This study focuses on the seismic safety evaluation of masonry buildings in Turkey for in‐plane failure modes using fragility curves. Masonry buildings are classified and a set of fragility curves are generated for each class. The major structural parameters in the classification of masonry buildings are considered as the number of stories, load‐bearing wall material, regularity in plan and the arrangement of walls (required length, openings in walls, etc.), in accordance with the observations from previous earthquakes and field databases. The fragility curves are generated by using time history (for demand) and pushover (for capacity) analyses. From the generated sets of fragility curves, it is observed that the damage state probabilities are significantly influenced from the number of stories and wall material strength. In the second stage of the study, the generated fragility curves are employed to estimate the damage of masonry buildings in Dinar after the 1995 earthquake. The estimated damage by fragility information is compared with the inspected visual damage as assessed from the Damage Evaluation Form. For the quantification of fragility‐based damage, a single‐valued index, named as ‘vulnerability score’ (VS), is proposed. There seems to be a fair agreement between the two damage measures. In addition to this, decisions regarding the repair or demolition of masonry buildings in Dinar due to visual damage inspection are on comparable grounds with the relative measure obtained from VS of the same buildings. Hence, the fragility‐based procedure can provide an alternative for the seismic safety evaluation of masonry buildings in Turkey. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
工程结构地震破坏概率矩阵分析   总被引:3,自引:0,他引:3  
本文提出了一种计算工程结构地震坡坏概率矩阵的方法,建立了地震地面运动模型和结构分析模型,对结构进行了随机地震反应分析,并获得了结构随机分应的统计量,进而采用双参数的结构破坏模型,给出了教育处结构地震破坏概率的表达式,利用此方法计算了一座按8度要求设计的钢筋混凝土框架型,给出了计算结构地震坡坏概率的表达式,利用此方法计算了一座按8度要求的钢筋混凝土框架结构的地震破坏概率矩阵,本文提出了方法可以在确定抗震设防标准和进行震害预测时采用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号