首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new type of high-latitude magnetic bays is revealed at geomagnetic latitudes higher than 71°, called ??polar substorms.?? It is shown that polar substorms differ from both classical substorms and high-latitude geomagnetic disturbances of the type of polar boundary intensifications (PBIs). While classical substorms start at latitudes below 67° and then expand poleward, polar substorms start almost simultaneously in the evening-night polar region of the oval. In contrast to PBIs, accompanied by auroral streamers expanding southward, polar substorms are accompanied by auroral arcs quickly traveling northward. It is shown that polar substorms are observed before midnight (20?C22 MLT) under weak geomagnetic activity (Kp ?? 2) during the late recovery phase of a magnetic storm. It is shown that a typical feature of polar substorms is the simultaneous excitation of highly intensive Pi2 and Pi3 geomagnetic pulsations at high latitudes, which exceed the typical amplitude of these pulsations at auroral latitudes by more than an order of magnitude. The duration of pulsations is determined by the substorm duration, and their amplitude decreases sharply at geomagnetic latitudes below ??71°. It is suggested that pulsations reflect fluctuations in ionospheric currents connected with polar substorms.  相似文献   

2.
Spatial-temporal and spectral features of ground geomagnetic pulsations in the frequency range of 1–5 mHz at the initial phase of a strong magnetic storm of the 24th cycle of solar activity (August 5–6, 2011, with a Dst-variation in the storm maximum of ?110 nT) are analyzed. Large opposite in sign amplitudes of variations in IMF parameters (from ?20 to +20 nT) at a high velocity of the solar wind (~650 km/s) accompanied by intense bursts in solar-wind density (up to ~50 cm?3) were distinctive feature of interplanetary medium conditions causing the storm. Geomagnetic Pi3 pulsations global in longitude and latitude and in-phase in the middle and equatorial latitudes were found. The onset of pulsation generation was caused by a pulse of dynamic pressure of the solar wind (~20 nPa), i.e., by a considerable compression of the magnetosphere. The maximum (2–3 mHz) in the amplitude spectrum of near-equatorial pulsations coincided with the maximum of pulsations in the daytime polar cap. After the next jump of the dynamic pressure of the solar wind (~35 nPa), an additional maximum appeared in the pulsation spectrum in the frequency band of ~3.5–4.5 mHz. Global pulsations suddenly stopped after a sharp decrease in the solar-wind dynamic pressure and corresponding extension of the magnetosphere. The obtained results are compared with the time dynamics of the position and shape of the plasmapause.  相似文献   

3.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone.  相似文献   

4.
Based on the observations in six pairs of almost conjugate high-latitude stations in the Arctic and Antarctic regions, the spectral and spatial-temporal structures of long-period geomagnetic pulsations (f = 2–5 mHz) during the magnetic storm of April 16–17, 1999, which is characterized by a high (up to 20 nPa) solar wind dynamic pressure, have been studied. It has been indicated that the magnetic storm sudden commencement is accompanied by a symmetrical excitation of np pulsations near the dayside polar cusps with close amplitudes. Under the conditions when IMF B z > 0 and B y < 0, strong magnetic field variations with the periods longer than 15–20 min were observed only in the northern polar cap. When IMF B z and B y became close to zero, geomagnetic pulsation bursts in both hemispheres were registered simultaneously but differed in the spectral composition and spatial distribution. In the Northern Hemisphere, pulsations were as a rule observed in a more extensive latitude region than in the Southern Hemisphere. In the Northern Hemisphere, the oscillation amplitude maximum was observed at higher latitudes than in the Southern Hemisphere. The pulsation amplitude at geomagnetic latitude lower than 74° was larger in the Arctic Regions than in the Antarctic Regions. This can be explained by sharply different geographic longitudes in the polar cap and latitudes in the auroral zone, which results in a different ionospheric conductivity affecting the amplitude of geomagnetic pulsations.  相似文献   

5.
The geomagnetic observations, performed at the global network of ground-based observatories during the recovery phase of the superstrong magnetic storm of July 15–17, 2000 (Bastille Day Event, Dst = ?301 nT), have been analyzed. It has been indicated that magnetic activity did not cease at the beginning of the storm recovery phase but abruptly shifted to polar latitudes. Polar cap substorms were accompanied by the development of intense geomagnetic pulsations in the morning sector of auroral latitudes. In this case oscillations at frequencies of 1–2 and 3–4 mHz were observed at geomagnetic latitudes higher and lower than ~62°, respectively. It has been detected that the spectra of variations in the solar wind dynamic pressure and the amplitude spectra of geomagnetic pulsations on the Earth’s surface were similar. Wave activity unexpectedly appeared in the evening sector of auroral latitudes after the development of near-midnight polar substorms. It has been established that the generation of Pc5 pulsations (in this case at frequencies of 3–4 mHz) was spatially asymmetric about noon during the late stage of the recovery phase of the discussed storm as took place during the recovery phase of the superstrong storms of October and November 2003. Intense oscillations were generated in the morning sector at the auroral latitudes and in the postnoon sector at the subauroral and middle latitudes. The cause of such an asymmetry, typical of the recovery phase of superstrong magnetic storms, remains unknown.  相似文献   

6.
The specific features of the diurnal and seasonal variations in different characteristics of two Pi2 geomagnetic pulsation groups (observed during magnetospheric substorms and when these substorms are absent) and the pulsation generation geophysical conditions have been experimentally studied based on observations at the Borok midlatitude observatory. It has been indicated that the dynamics of the occurrence frequency of Pi2 substorm and nonsubstorm bursts and their amplitude, duration, and intervals between peaks depending on the local time and season is identical in many respects. It has been found that substorm Pi2 bursts are mostly observed when the IMF is sunward and the solar wind electric field (Ey) is positive, whereas nonsubstorm bursts are observed when the IMF is antisunward and Ey is negative. The fundamental differences in the diurnal and seasonal variations in index α, which characterizes the slope of the distribution function of the two-group Pi2 burst amplitudes, have been revealed. It has been found that the index α value substantially depends on Ey and the IMF longitude (ψ). It has been assumed that the plasma sheet turbulence of the metastable magnetotail is responsible for reconnection and the generation of substorm and nonsub-storm Pi2 pulsation bursts.  相似文献   

7.
Ground-based geomagnetic Pc5 (2–7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ~ 30–50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called “anomaly rectification” in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth’s magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.  相似文献   

8.
The diumal variations in the parameters of Pc3 (20–60 mHz) and Pc4 (10–19 mHz) pulsations at latitudes of the dayside cusp and polar cap have been studied using data of the magnetic stations of the trans-Antarctic meridional profile for the time interval from January to March 1997 (local summer) under weakly disturbed geomagnetic conditions (AE ≤ 250 nT). The technique for estimating pulsation parameters is based on the separation of the wave packets and noise. The diumal variations in the hourly average parameters of the wave packets in the Pc3 and Pc4 bands and noise in the Pc3-4 band (10–60 mHz)—the average number of wave packets, energy of wave packets and noise, and energy of a single wave packet—turned out to be different for the stations located deep in the polar cap (Φ ~ 87°) and at the latitudes of the dayside polar cusp (Φ ~ 70°) and auroral oval (Φ ~ 66°). Several sources of pulsations caused by different channels of wave energy penetration into the magnetosphere through the dayside cusp, dayside magnetopause, and dawn flank of the magnetotail apparently exist at high latitudes.  相似文献   

9.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   

10.
The latitudinal position of subauroral proton spots (special proton auroras observed from the IMAGE satellite) has been compared with the Pc1 pulsation intensity distribution determined using the data from the Finnish meridional network of induction magnetometers. It has been indicated that a Pc1 intensity maximum is always observed at the station that is closer to the proton aurora projection. Two Pc1 bands were registered in the event when two proton auroral spots were simultaneously observed at different latitudes. In this case, the Pc1 intensity distribution maximum at lower frequencies was related to a proton auroral spot at a higher latitude and vice versa. Such a spatial correlation between Pc1 pulsations and proton auroral spots, together with the previously established time correlation between these phenomena, demonstrates that subauroral proton spots reflect the region of ion cyclotron instability in the equatorial magnetosphere at the level of the ionosphere.  相似文献   

11.
The features of daytime high-latitude geomagnetic variations and geomagnetic pulsations in the Рс5 range during the recent, large, two-stage magnetic storm of September 7–8, 2017 are studied. The discussed disturbances were observed at the recovery phase of the first stage of the storm after the interplanetary magnetic field (IMF) turned northward. It is shown that the large sign-alternating variations in Ву and Bz components of the IMF caused intense geomagnetic disturbances up to 300–400 nT with a quasi-period of ~20 min in the daytime sector of polar latitudes, probably in the region of the daytime polar cusp. These disturbances may have reflected quasi-period motions of the daytime magnetopause and may have resulted from nonlinear transformation of the variations in the interplanaterary magnetic field in the magnetosheath or in the magnetospheric entry layers. The appearance of high-latitude long-period variations was accompanied by the excitation of bursts (wave packets) of geomagnetic Pc5 pulsations. The onset of Pc5 pulsation bursts often coincided with a sudden northward turn of the IMF. It was discovered for the first time that the development of a “daytime polar substorm,” i.e., a negative magnetic bay in the daytime sector of polar latitudes, led to a sudden termination of the generation of geomagnetic Pc5 pulsations over the entire latitude range in which these oscillations were recorded before the appearance of the daytime bay.  相似文献   

12.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

13.
Photometric measurements of pulsating auroras have been carried out in the Pi3 range of geomagnetic pulsations with periods of 2–10 min with the use of auroral all-sky camera films obtained at the Lovozero Observatory. The new all-sky camera developed at the Polar Geophysical Institute uses the CCD matrix. This makes it possible to obtain simultaneous images in red, green, and blue spectral ranges and thus to investigate temporal luminosity variations in these spectral regions. The hardness of penetrating auroral electrons with a time resolution of a few seconds is qualitatively estimated. It is found that the energy of the electrons that cause auroras in the Pi3 pulsation range is not constant over the pulsation period. It is maximal at the lowest luminosity and minimal at its peaks. Luminosity pulsations are compared with geomagnetic pulsations, and it is established that large differences between luminosity variations in different parts of the sky explain the incomplete correspondence between the records of auroral and geomagnetic pulsations.  相似文献   

14.
The characteristics and interplanetary excitation conditions of isolated bursts of Pi2 geomagnetic pulsations observed during the development of magnetospheric substorms (substorm Pi2) and in its absence (nonsubstorm Pi2) on the night side of the Earth are comparatively analyzed. It is shown that, regardless of the local time and season, the amplitude of isolated Pi2 substorm bursts is always higher than that of the nonsubstorm ones, and the periods and duration of the wave packets of substorm Pi2 bursts are less than those of nonsubstorms. Diurnal and seasonal variations in the characteristics of the two groups of Pi2 bursts differ in the form and position of maxima and minima. It is found that the start of excitation of isolated Pi2 bursts, during substorms and in its absence, is controlled by the preferred direction of the interplanetary magnetic field (IMF) vector perpendicular to the Sun–Earth line (angle θxB = arccos(Bx/B) → 90°). It is assumed that isolated Pi2 bursts of both groups are triggered by reorientation of the IMF vector in the ecliptic plane and the plane perpendicular to it ~15 min before their onset. The most likely source of midlatitude isolated Pi2 bursts during substorm development and in its absence are bursty bulk flows (BBFs) in the plasma sheet of the magnetospheric tail, the regularities of which coincide in many respects with the observed features of Pi2 bursts.  相似文献   

15.
Long-period geomagnetic pulsations during the SSC of July 14, 2012, are studied. The prenoon longitudinal sector (09:20–11:30) MLT, from the boundaries of which pulsations propagate azimuthally onto the dawn and dusk sides with an opposite polarization direction and increased amplitude, has been distinguished. The position of this sector relative to noon (a shift to the dawn side) depends on the front azimuthal inclination. It has been found that the polarization direction reverses in going from low (<30°) to middle/subauroral (≥50°) latitudes on the entire dayside. The geomagnetic pulsations mainly fluctuate near the f1 = 2.9 and f2 = 4.4 mHz frequencies. Fluctuations with frequency f1, which coincide with the fluctuation frequency of the IMF х component, predominate at the polar cap latitudes (the open field line region) in the form of rapidly attenuating impulses and at low latitudes with a much smaller amplitude. Fluctuations with frequency f2 are globally registered at all latitudes in the dayside sector below the magnetopause projection as a train of several fluctuations. It is assumed that fluctuations with frequency f1 penetrate from the solar wind, and fluctuations with frequency f2 are radial magnetopause oscillations.  相似文献   

16.
A very strong magnetic storm of May 15, 2005, was caused by an interplanetary magnetic cloud that approached the Earths’ orbit. The sheath region of this cloud was characterized by a high solar wind density (~25–30 cm?3) and velocity (~850 km/s) and strong variations (to ~20 nT) in the interplanetary magnetic field (IMF). It has been indicated that an atypical bay-like geomagnetic disturbance was observed during the initial phase of this storm in a large longitudinal region at high latitudes: from the morning to evening sectors of the geomagnetic local time. Increasing in amplitude, the magnetic bay rapidly propagated to the polar cap latitudes up to the geomagnetic pole. An analysis of the global space-temporal dynamics of geomagnetic pulsations in the frequency band 1–6 mHz indicated that most intense oscillations were observed in the morning sector in the region of the equivalent ionospheric current at latitudes of about 72°–76°. The wavelet structure of magnetic pulsations in the polar cap and fluctuations in IMF was generally similar to the maximum at frequencies lower than 4 mHz. This can indicate that waves directly penetrated into the polar cap from the solar wind.  相似文献   

17.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   

18.
Simultaneous morning Pc5 pulsations (f ~ 3–5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.  相似文献   

19.
Certain large magnetic lays, registered by magnetometers in the auroral and subauroral zones simultaneously with SC instant and accompanying events, substantially differ from activations at the beginning of auroral substorm. Such basic substorm elements as energy accumulation during the growth phase and breakup—activation in the localized region near midnight—are absent. During such sudden auroral activations (SAs), a disturbance begins in a wide sector of longitudes and latitudes. It is proposed to combine SAs into an individual class of magnetospheric disturbances. The particle acceleration and injection mechanism, which causes SAs, is considered.  相似文献   

20.
The latitudinal distributions of horizontal geomagnetic variations, ΔH, and their time derivatives, ∂H/∂t, were analysed statistically over the three-year period 2003–2005. It appears that the amplitude distributions of horizontal geomagnetic variations and their time derivatives differ systematically between different geomagnetic latitudes and storm intensity levels. We show that the magnetic field variations observed at auroral and polar cap latitudes are under all geomagnetic storm levels comparable in amplitude (in a statistical sense) while they are smaller at subauroral latitudes. In contrast, their time derivatives are clearly the largest at auroral latitudes at all storm levels. These distributions determine in a general sense where and with which probability technological systems and operational procedures may be affected by geomagnetic storms. However, one observes in individual cases that the peak ∂H/∂t (the largest in all horizontal directions) is not necessarily the one which triggers a power system blackout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号