首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The τ-p transform is an invertible transformation of seismic shot records expressed as a function of time and offset into the τ (intercept time) and p (ray parameter) domain. The τ-p transform is derived from the solution of the wave equation for a point source in a three-dimensional, vertically non-homogeneous medium and therefore is a true amplitude process for the assumed model. The main advantage of this transformation is to present a point source shot record as a series of plane wave experiments. The asymptotic expansion of this transformation is found to be useful in reflection seismic data processing. The τ-p and frequency-wavenumber (or f-k) processes are closely related. Indeed, the τ-p process embodies the frequency-wavenumber transformation, so the use of this technique suffers the same limitations as the f-k technique. In particular, the wavefield must be sampled with sufficient spatial density to avoid wavenumber aliasing. The computation of this transform and its inverse transform consists of a two-dimensional Fast Fourier Transform followed by an interpolation, then by an inverse-time Fast Fourier Transform. This technique is extended from a vertically inhomogeneous three-dimensional medium to a vertically and laterally inhomogeneous three-dimensional medium. The τ-p transform may create artifacts (truncation and aliasing effects) which can be reduced by a finer spatial density of geophone groups by a balancing of the seismic data and by a tapering of the extremities of the seismic data. The τ-p domain is used as a temporary domain where the attack of coherent noise is well addressed; this technique can be viewed as ‘time-variant f-k filtering’. In addition, the process of deconvolution and multiple suppression in the τ-p domain is at least as well addressed as in the time-offset domain.  相似文献   

2.
Common midpoint data are now being collected with ever increasing source-receiver offsets. For wide aperture seismic data classical methods of interpretation fail, since velocity analyses and signal-to-noise enhancement methods based on hyperbolic traveltime curves are no longer appropriate. Therefore, the goals of increased velocity resolution and signal enhancement, which motivate the increase in offset, are not achieved. Approximate methods, involving higher order traveltime curves or extrapolations, have been developed for velocity analysis but these are ineffective in the presence of refracted arrivals, and lack a physical basis. These problems can be minimized by transforming the observational data to the domain of intercept or vertical delay time τ and horizontal ray parameter p. In this domain headwave refractions are collapsed into points and both near vertical and wide angle reflections can be analyzed simultaneously to derive velocity-depth information, even in the presence of velocity gradients or low velocity zones.  相似文献   

3.
In this study, observed seismic attributes from shot gather 11 of the SAREX experiment are used to derive a preliminary velocity and attenuation model for the northern end of the profile in southern Alberta. Shot gather 11 was selected because of its prominent Pn arrivals and good signal to noise ratio. The 2-D Gaussian beam method was used to perform the modeling of the seismic attributes including travel times, peak envelope amplitudes and pulse instantaneous frequencies for selected phases. The preliminary model was obtained from the seismic attributes from shot gather 11 starting from prior tomographic results. The amplitudes and instantaneous frequencies were used to constrain the velocity and attenuation structure, with the amplitudes being more sensitive to the velocity gradients and the instantaneous frequencies more sensitive to the attenuation structure. The resulting velocity model has a velocity discontinuity between the upper and lower crust, and lower velocity gradients in the upper and lower crust compared to earlier studies. The attenuation model has Q p -1 values between 0.011 and 0.004 in the upper crust, 0.0019 in the lower crust and a laterally variable Q p -1 in the upper mantle. The Q p -1 values are similar to those found in Archean terranes from other studies. Although the results from a single gather are non-unique, the initial model derived here provides a self-consistent starting point for a more complete seismic attribute inversion for the velocity and attenuation structure.  相似文献   

4.
In two-component seismic observations with vertical and in-line horizontal geophones, the compressional (P-) wave amplitudes, as well as the vertically polarized shear (SV-) wave amplitudes, are observed on both vertical and horizontal geophones. In our case, we use a P-wave source, while the SV waves are the result of mode conversion. The mode-conversion mechanism considered here is related to the near-surface layers, i.e. we have a P-leg from the source and mode conversion at/in the weathered layer. The resulting SV waves therefore will show lateral variations because the elastic parameters of the near-surface layers vary along the seismic line, but these variations will be consistent at the surface. This effect is demonstrated by a synthetic example based on elastic parameters representative of the actual seismic line being considered. To separate the individual P and SV arrivals, we apply a two-dimensional convolution filter designed to meet the wavenumber-frequency (k-f) domain transfer function for P-SV separation which can be derived from thek-f domain geophone-receiving characteristic and the near surface P- and S-wave velocities. The reason for P-SV separation filtering in the offset-traveltime (X-T) domain instead of directly filtering in thek-f domain, is a great saving in computer time, asX-T filters, with few coefficients, can be used. In this paper, after a short summary of thek-f domain P-SV separation filters and their transformation to theX-T domain, we apply theX-T filters to synthetic data in order to demonstrate that our design is correct. We also work on actual data and discuss the problems being faced, which mainly, originate from the different geophone groups and, as a consequence, the different scalings of vertical and horizontal geophones. The main advantage of two-component seismic observations is two-fold: firstly, a clean P-wave section is obtained (SV-energy arriving at the receivers is cancelled by applying the foresaid separation filter) and, secondly we obtain an additional SV-wave section at almost no cost to data acquisition. These two sections contribute towards distinguishing between true and false bright spots, so they are, used as direct hydrocarbon indicator tools.  相似文献   

5.
Reflection and refraction data are normally processed with tools designed to deal specifically with either near- or far-offset data. Furthermore, the refraction data normally require the picking of traveltimes prior to analysis. Here, an automatic processing algorithm has been developed to analyse wide-angle multichannel streamer data without resorting to manual picking or traveltime tomography. Time–offset gathers are transformed to the tau–p domain and the resulting wavefield is downward continued to the depth–p domain from which a velocity model and stacked section are obtained. The algorithm inputs common-depth-point (CDP) gathers and produces a depth-converted stacked section that includes velocity information. The inclusion of long-offset multichannel streamer data within the tau–p transformation enhances the signal from high-velocity refracted basalt arrivals. Downward continuation of the tau–p transformed wavefield to the depth–p domain allows the reflection and refraction components of the wavefield to be treated simultaneously. The high-slowness depth–p wavefield provides the velocity model and the low-slowness depth–p wavefield may be stacked to give structural information. The method is applied to data from the Faeroe Basin from which sub-basalt velocity images are obtained that correlate with an independently derived P-wave model from the line.  相似文献   

6.
基于单程波方程的角度域照明分析   总被引:1,自引:1,他引:0       下载免费PDF全文
试图运用波场动力学途径,旨在增强观测系统分析评估,本文提出基于单程波方程的角度域照明分析方法.本文方法不仅可用于观测系统设计,对叠前成像资料的考量、叠前振幅补偿和AVA(Amplitude Versus Angle,振幅随角度变化)反演也必具重要的意义.文中通过目的层邻域单个绕射点的正、反传波场分析,给出地下目标的水平和倾斜界面随角度变化的成像照明强度.单程波方法可用于模拟地震波在复杂速度构造下的传播,并得到较准确的幅值和多次到达的波场,用以对绕射点正、反传分析时可在照明分析中简明地利用幅值信息和多次到达的波场.本文方法可显现复杂盖层下目标的照明情况.本文中也对照明能量随传播距离的几何扩散进行补偿,突显了角度域的照明均匀度和范围,从而使得所分析的结果可直接应用于AVA的分析及补偿.针对照明分析的特点,文中建议可用一种快速的单程波波场延拓策略——频率速度相关变步长波场深度延拓.数值实验结果表明了本文方法是可行且有效的.  相似文献   

7.
消除海底起伏影响的海洋地震波场正反向延拓   总被引:1,自引:0,他引:1  
为了解决海底起伏变化对地震波场的影响问题,本文提出将(x-z)域中的曲网格映射成(ξ,η)域中的矩形网格,推导出(ξ,η)域中的二维标量声波方程,根据推导出来的波动方程采用逆时有限差分法将海面上采集到的地震波场在(ξ,η)域中向下延拓至海底面,延拓时采用海水的速度,然后采用顺时有限差分法将延拓后的地震波场再反延拓到海面上,延拓时采用海底面以下地层的速度,从而消除了海底起伏带来的负面影响。模型及实际地震资料的计算分析表明该方法不但能够校正由于海底起伏所引起的海底面下地层反射波场的不连续性还能够校正由于海底起伏所引起的地震波的动力学特征的变化。对延拓前后的地震波场进行速度反演,延拓后反演的地层速度比延拓前反演的地层速度的精度提高很多,延拓前后地震波场的叠加剖面对比表明该延拓方法能够明显提高地震波场的成像质量。  相似文献   

8.
We demonstrate that the use of long-offset seismic data allows wide-angle reflections and diving waves to be recorded, and that these can be used in conjunction with prestack depth migrations to constrain and to image the base of the basalt flows and the underlying structure in the Faeroe-Shetland Basin. Crustal velocity models are built first by inverting the traveltimes of the recorded reflections and diving waves using ray-tracing methods. Finer details of the velocity structure can then be refined by analysis of the amplitudes and waveforms of the arrivals. We show that prestack depth migration of selected wide-angle arrivals of known origin, such as the base-basalt reflection, using the crustal velocity model, allows us to build a composite image of the structure down to the pre-rift basement. This has the advantage that the wide-angle first-arriving energy must be primary, and not from one of the many multiples or mode-converted phases that plague near-offset seismic data. This allows us to ‘tag’ these primary arrivals with confidence and then to identify the same arrivals on higher-resolution prestack migrations that include data from all offsets. Examples are drawn from the Faeroe-Shetland Basin, with a series of regional maps of the entire area showing the basalt depths and the thickness of the basalt flows and underlying sediment down to the top of the pre-rift basement. The maps show how the basalts thin to the southeast away from their presumed source west of the present Faeroe Islands, and also show the extent to which the structure of the pre-rift basement controls the considerable variations in sediment thickness between the basement and the cap formed by the overlying basalt flows.  相似文献   

9.
深反射地震剖面法为了获取深部结构特征常常采取大的偏移距采集数据.目前公开发表的相关资料中,鲜有利用深反射地震炮集数据获取近地表的结构特征.为此,本文通过正演测试了相关数据处理流程,即利用有限差分正演了起伏地表模型的大偏移距地震单炮弹性波场特征,通过共检波点域面波信号F-K频谱叠加构建新方法,从深反射地震数据集中提取了高品质的多阶面波频散曲线,再利用多阶面波联合反演获得了近地表的结构特征.在前述正演流程基础上,利用跨越班公湖—怒江缝合带的SinoProbe深反射地震剖面中的实际炮集数据,求取了基阶和一阶瑞利波频散曲线,联合反演后得到近地表横波速度结构.该结果与初至波走时反演获取的纵波速度结构具有较好的一致性,且在近地表的浅层分辨率较纵波速度结构特征更高,而更与已有地质认识相吻合.本文提供的相关数据处理流程表明利用深反射地震炮集数据,也能够获取近地表浅层的横波速度结构.  相似文献   

10.
Introduction The calculation of seismic wave traveltimes is a basic and the most important step in tomo-graphy, seismic wave forward modeling and Kirchhoff prestack depth migration. Limitations withtraditional ray tracing fall into four categories. a) Analytical methods can only realize ray tracingfor simply varying velocity fields, so they have relative small applied-range; b) Shooting methodsof ray tracing can cause shadow zones. When the shadow zones exist the method will invalid; c)…  相似文献   

11.
云南思茅—中甸地震剖面的地壳结构   总被引:7,自引:7,他引:7       下载免费PDF全文
张智  赵兵  张晰  刘财 《地球物理学报》2006,49(5):1377-1384
云南思茅—中甸宽角反射/折射地震剖面切割松潘—甘孜、扬子和华南三个构造单元的部分区域. 我们利用初至波和壳内反射波走时层析成像获得地壳纵波速度结构. 在获得新的地壳速度结构模型基础上,利用地震散射成像思想和低叠加次数的叠前深度偏移方法重建了研究区的地壳、上地幔反射结构. 综合分析研究区地壳P波速度模型和壳内地震反射剖面发现:沿测线从北至南地壳厚度从约50 km减薄至35 km左右,地壳厚度的减薄量主要体现在下地壳,剖面北段下地壳厚度约为30 km,剖面南段下地壳厚度仅为15 km左右;上地幔顶部局部位置P波速度值偏低,一般为76~78 km/s,反映出云南地区是典型的构造活动区的特点.剖面沿线地壳内地震反射发育,其中莫霍强反射出现在景云桥下方;在景云桥弧形断裂带8~10 km深处出现宽约50 km的强反射带.  相似文献   

12.
Multiple coverage reflection seismic data provide an important source of information concerning the subsurface. However, due to the stacking and migration techniques used in the processing, the first arrivals are muted and details about the upper part of the sections are generally lost. This paper describes a computerized method for the inverse modelling of laterally varying velocities and shallow depths which are not sufficiently resolved in the reflection seismic processing. The method minimizes, in a least-squares manner, the difference between the observed first arrivals, picked from the reflection traces, and a set of synthetic traveltimes, calculated by ray tracing in a cell model. An initial model, e.g. from a priori knowledge or the application of a conventional interpretation method, is refined iteratively until no further essential improvement can be achieved. Traditional first-arrival inversion methods cannot, in general, provide such flexible modelling. The technique is successfully tested on synthetic data as well as on first arrivals picked automatically from the records of a reflection seismic survey in North Jutland, Denmark.  相似文献   

13.
A joint inversion of both first and refracted arrivals is applied on a seismic line, acquired onshore, in order to obtain a well‐resolved velocity field for the computation of static corrections. The use of different arrivals in the inversion involves exploiting the information derived from the different raypaths associated with each wave type, thus enhancing the reliability of the inversion. The data was gathered by Saudi Aramco in an area of the Arabian Peninsula characterized by strong lateral variations, both in topography and shallow velocity, and where therefore a well‐defined near‐surface velocity field is important. In addition to velocity, the depth distribution of the quality factor Q is computed from the tomographic inversion of the seismic‐signal frequency shift. Thus, the Q‐factor field is used to perform an inverse Q‐data filtering and improve the resolution of the final stacked section.  相似文献   

14.
It is known that the reflection and transmission coefficients used in the zeroth order approximation of asymptotic ray theory (ART) are identical to those obtained for the plane wave impinging on a plane interface separating two perfectly elastic half-spaces. We have used ART to compute reflection and transmission coefficients for two viscoelastic media separated by a plane interface. Our method is different from the plane-wave approach because the ART approach requires only a local application of the boundary conditions both for the eikonal and the ray amplitudes. Several types of viscoelastic media were studied. For a given model, the elastic case was emulated by setting all the quality factors Q equal to each other. Several anelastic cases were computed by keeping the same velocities and densities while changing the Qs. The quality factor is a relatively difficult parameter to measure exactly. Hence elastic coefficients are used in most synthetic seismogram computations, and the quality factors are chosen from experimental measurements or simply estimated. From these computations, amplitude and phase differences between elastic coefficients and coefficients for dissipative media are observed in some cases. These differences show the importance of knowing the exact values of Q. Incorrect Q values can lead to unrealistic moduli and to noticeable phase differences of these viscoelastic coefficients.  相似文献   

15.
在多分量地震勘探资料中,水平和垂直分量都记录有P波和SV波。本文研究了P波和SV波波场分解的方法。当上行P波和S波分别入射时,通过研究它们引起的水平和垂直位移,把地震记录的水平和垂直分量进行分解,得到纵波和转换波;在已知海底介质中纵横波速度和介质密度的情况下,可以在τ-P域内实现波场分解,然后变换到时间域,得到时间域内的纵波和转换波剖面。把本文研究的波场分解方法应用于合成资料,能够有效地分解得到纵波波场和转换波波场。最后,海上多分量实际资料的实例应用表明,本文研究的波场分解方法是可行有效的。本方法也适用于自由表面的资料。  相似文献   

16.
One of the most important problems in applied geophysics is to extract velocities of compressional and shear waves, using the observed data collected at the Earth's surface or in boreholes. Unfortunately, in a typical seismic experiment, we do not have enough information to uniquely recover seismic velocities as functions ofx, y, andz. Thus, in the paper, a simplified model of the Earth (a stack of horizontal homogeneous layers) is considered and a critical discussion of modern techniques for processing reflection arrivals is presented.  相似文献   

17.
We present a new method for producing a ‘brute’ velocity image rapidly and automatically from traveltimes picked from densely sampled refraction data. The procedure involves imaging by data transformation from the time–offset domain into the tau–p (intercept–slope) domain, and does not include conventional modelling steps. Differences in apparent velocity and tau along reciprocal paths in the up- and downdip directions allow the estimation of the true velocity and geometrical position of the ray turning points. The tau–velocity–turningpoint (τνx) map distributes phases automatically on the basis of geometry and velocity to give a two-dimensional representation of subsurface structure. This map may be converted simply to depth and two-way-time images. Such images have potential for direct geological interpretation, for use as a starting model for seismic inversion, for superimposition on to conventional reflection images, or for input into prestack depth migration and other processing routines.  相似文献   

18.
From the wealth of information which can be deduced from VSP, the information most directly comparable to well logs is considered: P-wave and S-wave interval velocity, acoustic impedance, and the velocity ratio γ=Vs/Vp. This information not only allows better interpretation of surface seismic sections but also improves processing. For these results to be usable a number of precautions must be taken during acquisition and processing; the sampling in depth should be chosen in such a way that aliasing phenomena do not unnecessarily limit the spectra during the separation of upwards and downwards travelling waves. True amplitudes should be respected and checked by recording of signatures, and the interference of upwards and downwards travelling waves should be taken into account for the picking of first arrivals. The different steps in processing and the combination of results in the interpretation of surface seismic results are described with actual records.  相似文献   

19.
20.
The refraction convolution section (RCS) is a new method for imaging shallow seismic refraction data. It is a simple and efficient approach to full‐trace processing which generates a time cross‐section similar to the familiar reflection cross‐section. The RCS advances the interpretation of shallow seismic refraction data through the inclusion of time structure and amplitudes within a single presentation. The RCS is generated by the convolution of forward and reverse shot records. The convolution operation effectively adds the first‐arrival traveltimes of each pair of forward and reverse traces and produces a measure of the depth to the refracting interface in units of time which is equivalent to the time‐depth function of the generalized reciprocal method (GRM). Convolution also multiplies the amplitudes of first‐arrival signals. To a good approximation, this operation compensates for the large effects of geometrical spreading, with the result that the convolved amplitude is essentially proportional to the square of the head coefficient. The signal‐to‐noise (S/N) ratios of the RCS show much less variation than those on the original shot records. The head coefficient is approximately proportional to the ratio of the specific acoustic impedances in the upper layer and in the refractor. The convolved amplitudes or the equivalent shot amplitude products can be useful in resolving ambiguities in the determination of wave speeds. The RCS can also include a separation between each pair of forward and reverse traces in order to accommodate the offset distance in a manner similar to the XY spacing of the GRM. The use of finite XY values improves the resolution of lateral variations in both amplitudes and time‐depths. The use of amplitudes with 3D data effectively improves the spatial resolution of wave speeds by almost an order of magnitude. Amplitudes provide a measure of refractor wave speeds at each detector, whereas the analysis of traveltimes provides a measure over several detectors, commonly a minimum of six. The ratio of amplitudes obtained with different shot azimuths provides a detailed qualitative measure of azimuthal anisotropy and, in turn, of rock fabric. The RCS facilitates the stacking of refraction data in a manner similar to the common‐midpoint methods of reflection seismology. It can significantly improve S/N ratios.Most of the data processing with the RCS, as with the GRM, is carried out in the time domain, rather than in the depth domain. This is a significant advantage because the realities of undetected layers, incomplete sampling of the detected layers and inappropriate sampling in the horizontal rather than the vertical direction result in traveltime data that are neither a complete, an accurate nor a representative portrayal of the wave‐speed stratification. The RCS facilitates the advancement of shallow refraction seismology through the application of current seismic reflection acquisition, processing and interpretation technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号