首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computer model has been used to estimate soil loss and sediment yield from irregular field-size units of small watersheds. Input to the model includes spring data (i.e. relating to February through May) for the independent variables of the Universal Soil Loss Equation, and for factors such as surface roughness, an index of overland runoff, and proximity to the stream. Output from the model includes maps of seasonal estimates of potential soil losses, field sediment delivery ratios, and expected sediment yields. On the basis of selected erosion and sediment yield tolerances, the output information has been analysed to identify watershed areas which (1) exhibit both erosion and sediment yield problems; (2) exhibit only erosion problems; (3) exhibit only sediment yield problems; and (4) exhibit neither erosion nor sediment yield problems. The percentage of the watershed area in each category and the percentage of the watershed soil loss and sediment loads contributed by each category are also identified. Application of the procedure for planning remedial control programs for five watersheds is discussed.  相似文献   

2.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   

3.
Field investigations indicate that unpaved roads are the largest sediment source on St John, US Virgin Islands. Cross-sectional measurements of eroded road surfaces were used to establish an empirical relationship to predict annual road surface erosion as a function of road gradient and contributing drainage area. A model (ROADMOD) for estimating and mapping average annual sediment production from a road network was developed by combining this empirical relationship with a series of network algorithms to analyse road data stored in a vector geographic information system. ROADMOD was used to estimate road surface erosion in two St John catchments with very different road densities but similar land cover, topography and soils. Unpaved roads were found to increase sediment production in the more densely roaded catchment by a factor of three to eight, and in the less-roaded catchment by a factor of 1·3–2·0. Turbidity measurements in the receiving bays of these two catchments are consistent with model predictions and observed sediment delivery processes. Although this model was developed specifically for St John, it can easily be adapted to other locations by substituting a locally derived predictive equation for road erosion. Model assumptions, limitations and potential improvements are discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Sedimentation from soil erosion is a critical reservoir watershed management issue. Due to the difficulty of field investigations, empirical formulas are commonly used to estimate the soil erosion rate. However, these estimations are often far from accurate. An effective alternative to estimating soil erosion is to analyze the spatial variation of 137Cs inventory in the soil. 137Cs can be adsorbed by the soil and is widely assumed to change its distribution only when disturbed by rainfall and human activities. Thus, 137Cs distributed in soils can be a useful environmental tracer to estimate soil erosion. In this study, the net soil loss estimate is 108,346 t/yr and the gross erosion and net erosion rates are 10.1 and 9 t/ha yr respectively. The sediment delivery ratio is therefore estimated to be 0.9 based on the two erosion rates. Because of the steep hillsides in the watershed, only 10% of the sediment yield stayed in the deposition sites and 90% was transported to the river as the sediment output. Soil erosion estimates from spatial variations of the 137Cs activity in the Baishi river watershed showed satisfactory accuracy when compared to sediment yield data. Using soil 137Cs concentrations is therefore a feasible method for estimating soil loss or deposition in Taiwan. Data sampling, analysis and result of this approach are given in this paper.  相似文献   

5.
A new, multi‐tracer method is used to track erosion, translocation, and redeposition of sediment in a small watershed, thus allowing for the ?rst time a complete, spatially distributed, sediment balance to be made as a function of landscape position. A 0·68 ha watershed near Coshocton, Ohio, USA was divided into six morphological units, each tagged with one of six rare earth element oxides. Sediment translocation was evaluated by collecting run‐off and by spatially sampling the soil surface. Average measured erosion rate was 6·1 t ha?1, but varied between 40·4 t ha?1 loss from the lower channels to 24·1 t ha?1 gain on the toeslope. With this technique it was possible for the ?rst time to itemize the sediment budget for landscape elements into three components: (1) the soil from the element that left the watershed with run‐off; (2) soil from the element that was redeposited on lower positions, with the spatial distribution of that deposition; and (3) soil originating from the upper positions and deposited on the element, with quanti?cation of relative source areas. The results are incongruous with the current morphology of the watershed, suggesting that diffusion‐type erosion must also play a major role in de?ning the evolution of this landscape. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Black marls form very extensive outcrops in the Alps and constitute some of the most eroded terrains, thus causing major problems of sedimentation in artificial storage systems (e.g. reservoirs) and river systems. In the experimental catchments near Draix (France), soil erosion rates have been measured in the past at the plot scale through a detailed monitoring of surface elevation changes and at the catchment scale through continuous monitoring of sediment yield in traps at basin outlets. More recently, erosion rates have been determined by means of dendrogeomorphic techniques in three monitored catchments of the Draix basin. A total of 48 exposed roots of Scots pine have been sampled and anatomical variations in annual growth rings resulting from denudation analysed. At the plot scale, average medium‐term soil erosion rates derived from exposed roots vary between 1·8 and 13·8 mm yr?1 (average: 5·9 mm yr?1) and values are significantly correlated with slope angle. The dendrogeomorphic record of point‐scale soil erosion rates matches very well with soil erosion rates measured in the Draix basins. Based on the point‐scale measurements and dendrogeomorphic results obtained at the point scale, a linear regression model involving slope angle was derived and coupled to high‐resolution slope maps obtained from a LiDAR‐generated digital elevation model so as to generate high‐resolution soil erosion maps. The resulting regression model is statistically significant and average soil erosion rates obtained from the areal erosion map (5·8, 5·2 and 6·2 mm yr?1 for the Roubine, Moulin and Laval catchments, respectively) prove to be well in concert with average annual erosion rates measured in traps at the outlet of these catchments since 1985 (6·3, 4·1 and 6·4 mm yr?1). This contribution demonstrates that dendrogeomorphic analyses of roots clearly have significant potential and that they are a powerful tool for the quantification and mapping of soil erosion rates in areas where measurements of past erosion is lacking. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Landslide erosion is a dominant hillslope process and the main source of stream sediment in tropical, tectonically active mountain belts. In this study, we quantified landslide erosion triggered by 24 rainfall events from 2001 to 2009 in three mountainous watersheds in Taiwan and investigated relationships between landslide erosion and rainfall variables. The results show positive power‐law relations between landslide erosion and rainfall intensity and cumulative rainfall, with scaling exponents ranging from 2·94 to 5·03. Additionally, landslide erosion caused by Typhoon Morakot is of comparable magnitude to landslide erosion caused by the Chi‐Chi Earthquake (MW = 7·6) or 22–24 years of basin‐averaged erosion. Comparison of the three watersheds indicates that deeper landslides that mobilize soil and bedrock are triggered by long‐duration rainfall, whereas shallow landslides are triggered by short‐duration rainfall. These results suggest that rainfall intensity and watershed characteristics are important controls on rainfall‐triggered landslide erosion and that severe typhoons, like high‐magnitude earthquakes, can generate high rates of landslide erosion in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Soil loss on arable agricultural land is typically an order of magnitude higher than under undisturbed native vegetation. Although there have been several recent attempts to quantify these accelerated fluxes at the regional, continental and even global scale, all of these studies have focused on erosion by water and wind and no large scale assessment of the magnitude of tillage erosion has been made, despite growing recognition of its significance on agricultural land. Previous field scale simulations of tillage erosion severity have relied on use of high resolution topographic data to derive the measures of slope curvature needed to estimate tillage erosion rates. Here we present a method to derive the required measures of slope curvature from low resolution, but large scale, databases and use high resolution topographical datasets for several study areas in the UK to evaluate the reliability of the approach. On the basis of a tillage model and land‐use databases, we estimate the mean gross tillage erosion rates for the part of Europe covered by the CORINE database (6·5% of global cropland) and we obtained an average of 3·3 Mg ha–1 y–1, which corresponds to a sediment flux of 0·35 Pg y–1. Water erosion rates derived for the same area are of a similar magnitude. This redistribution of soil within agricultural fields substantially accelerates soil profile truncation and sediment burial in specific landscape positions and has a strong impact on medium‐term soil profile evolution. It is, therefore, clear that tillage erosion must be accounted for in regional assessments of sediment fluxes and in analyses that employ these in the analysis of land management strategies and biogeochemical cycles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Soil erosion on hillslopes occurs by processes of soil splash from raindrop impacts and sediment entrainment by surface water flows. This study investigates the process of soil erosion by surface water flow on a stony soil in a semiarid environment. A field experimental method was developed whereby erosion by concentrated flow could be measured in predefined flow areas without disturbing the soil surface. The method allowed for measurements in this study of flow erosion at a much wider range of slopes (2·6 to 30·1 per cent) and unit discharge rates (0·0007 to 0·007 m2 s−1) than have been previously feasible. Flow velocities were correlated to discharge and hydraulic radius, but not to slope. The lack of correlation between velocity and slope might have been due to the greater rock cover on the steeper slopes which caused the surface to be hydraulically rougher and thus counteract the expected effect of slope on flow velocity. The detachment data illustrated limitations in applying a linear hydraulic shear stress model over the entire range of the data collected. Flow detachment rates were better correlated to a power function of either shear stress (r2 = 0·51) or stream power (r2 = 0·59). Published in 1999 by John Wiley & Sons, Ltd.  相似文献   

11.
Unpaved roads are believed to be the primary source of terrigenous sediments being delivered to marine ecosystems around the island of St John in the eastern Caribbean. The objectives of this study were to: (1) measure runoff and suspended sediment yields from a road segment; (2) develop and test two event‐based runoff and sediment prediction models; and (3) compare the predicted sediment yields against measured values from an empirical road erosion model and from a sediment trap. The runoff models use the Green–Ampt infiltration equation to predict excess precipitation and then use either an empirically derived unit hydrograph or a kinematic wave to generate runoff hydrographs. Precipitation, runoff, and suspended sediment data were collected from a 230 m long, mostly unpaved road segment over an 8‐month period. Only 3–5 mm of rainfall was sufficient to initiate runoff from the road surface. Both models simulated similar hydrographs. Model performance was poor for storms with less than 1 cm of rainfall, but improved for larger events. The largest source of error was the inability to predict initial infiltration rates. The two runoff models were coupled with empirical sediment rating curves, and the predicted sediment yields were approximately 0·11 kg per square meter of road surface per centimetre of precipitation. The sediment trap data indicated a road erosion rate of 0·27 kg m?2 cm?1. The difference in sediment production between these two methods can be attributed to the fact that the suspended sediment samples were predominantly sand and silt, whereas the sediment trap yielded mostly sand and gravel. The combination of these data sets yields a road surface erosion rate of 0·31 kg m?2 cm?1, or approximately 36 kg m?2 year?1. This is four orders of magnitude higher than the measured erosion rate from undisturbed hillslopes. The results confirm the importance of unpaved roads in altering runoff and erosion rates in a tropical setting, provide insights into the controlling processes, and provide guidance for predicting runoff and sediment yields at the road‐segment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Although obvious in the field, the impact of road building on hydrology and gullying in Ethiopia has rarely been analysed. This study investigates how road building in the Ethiopian Highlands affects the gully erosion risk. The road between Makalle and Adwa in the highlands of Tigray (northern Ethiopia), built in 1993–1994, caused gullying at most of the culverts and other road drains. While damage by runoff to the road itself remains limited, off‐site effects are very important. Since the building of the road, nine new gullies were created immediately downslope of the studied road segment (6·5 km long) and seven other gullies at a distance between 100 and 500 m more downslope. The road induces a concentration of surface runoff, a diversion of concentrated runoff to other catchments, and an increase in catchment size, which are the main causes for gully development after road building. Topographic thresholds for gully formation are determined in terms of slope gradient of the soil surface at the gully head and catchment area. The influence of road building on both the variation of these thresholds and the modification of the drainage pattern is analysed. The slope gradient of the soil surface at the gully heads which were induced by the road varies between 0·06 and 0·42 m m?1 (average 0·15 m m?1), whereas gully heads without influence of the road have slope gradients between 0·09 and 0·52 m m?1 (average 0·25 m m?1). Road building disturbed the equilibrium in the study area but the lowering of topographic threshold values for gullying is not statistically significant. Increased gully erosion after road building has caused the loss of fertile soil and crop yield, a decrease of land holding size, and the creation of obstacles for tillage operations. Hence roads should be designed in a way that keeps runoff interception, concentration and deviation minimal. Techniques must be used to spread concentrated runoff in space and time and to increase its infiltration instead of directing it straight onto unprotected slopes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Factors affecting rill erosion of unpaved loess roads in China   总被引:1,自引:0,他引:1       下载免费PDF全文
This study explores factors that affect road surface erosion in a small watershed on the Loess Plateau. Global positioning system (GPS)‐assisted field surveys and geographical information system methods were applied. The results show that road surface rills in the watershed are more easily formed on main roads, which are disturbed by intensive human activities. Secondary unpaved road networks occupied the largest road surface area and contributed 49% of the total road surface rill volumes. Spatial analysis reveals that roads near residential areas or leading to other human‐disturbed land‐use types are at high risk of soil loss. In each road segment, slope gradient, road segment length and drainage area have impacts on surface rill formation and development. Among these factors, slope gradients have been verified as a controlling factor of rill erosion intensification. Both road segment length (R = 0.83, N = 82) and drainage area (R = 0.72 for road segment and 0.76 for upslope drainage areas, N = 82) significantly influence total road surface rill volumes. The interaction variable of road segment length multiplied by slope is more closely correlated with road segment soil loss than that of the independent variables alone. Linear equations composed of slope gradient, road segment length and upslope drainage area are proposed. The new equation performs much better at predicting surface soil loss from secondary road segments compared with the previous models, which have not considered upslope drainage areas. The relationships and equations from this study will be helpful for road erosion evaluation in a small watershed of the study area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Cosmogenic 10Be concentrations in exposed bedrock surfaces and alluvial sediment in the northern Flinders Ranges reveal surprisingly high erosion rates for a supposedly ancient and stable landscape. Bedrock erosion rates increase with decreasing elevation in the Yudnamutana Catchment, from summit surfaces (13·96 ± 1·29 and 14·38 ± 1·40 m Myr?1), to hillslopes (17·61 ± 2·21 to 29·24 ± 4·38 m Myr?1), to valley bottoms (53·19 ± 7·26 to 227·95 ± 21·39 m Myr?1), indicating late Quaternary increases to topographic relief. Minimum cliff retreat rates (9·30 ± 3·60 to 24·54 ± 8·53 m Myr?1) indicate that even the most resistant parts of cliff faces have undergone significant late Quaternary erosion. However, erosion rates from visibly weathered and varnished tors protruding from steep bedrock hillslopes (4·17 ± 0·42 to 14·00 ± 1·97 m Myr?1) indicate that bedrock may locally weather at rates equivalent to, or even slower than, summit surfaces. 10Be concentrations in contemporary alluvial sediment indicate catchment‐averaged erosion at a rate dominated by more rapid erosion (22·79 ± 2·78 m Myr?1), consistent with an average rate from individual hillslope point measurements. Late Cenozoic relief production in the Yudnamutana Catchment resulted from (1) tectonic uplift at rates of 30–160 m Myr?1 due to range‐front reverse faulting, which maintained steep river gradients and uplifted summit surfaces, and (2) climate change, which episodically increased both in situ bedrock weathering rates and frequency–magnitude distributions of large magnitude floods, leading to increased incision rates. These results provide quantitative evidence that the Australian landscape is, in places, considerably more dynamic than commonly perceived. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The solute and suspended‐sediment load following five rainstorms (2005–2007) with varied intensities were studied at the Vernegà experimental watershed, north‐western Spain. Two land‐use areas are located within this watershed, the upstream one (forest) with 160 ha a 100% forested area, and the downstream one (agricultural) with 97 ha being 9 ha conventional agricultural field and 88 ha forest. This study investigates the capacity of each land‐use to yield water, suspended sediment concentration (SSC) and dissolved solid concentration (DSC). The hypothesis is that DSC and SSC from the agricultural area are greater than DSC and SSC of the forest area. Results showed that the agriculture area produced significantly greater mean DSC than in the forest area, the main contribution was the Ca2+ (24·68 ± 46·52 mg l?1) ion at the agricultural area. A long‐term sediment production rate at the agricultural outlet was calculated (69·1 tonnes per 100 years) based on the total sediment discharge (TSD) and the recurrence interval of the largest event of the five rainstorms (October 2005). Geographic information system (GIS) spatial data layers of the watershed were produced to determine the relation of tracks, landforms, slopes and forest management to SSC yield in the forest outlet (133·89 ± 308·14 mg l?1) during the five rainstorms. Agriculture practices are the main cause of soil erosion at the study area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Since sea level stabilized 7000 yr bp , shelf seas experiencing semi‐diurnal tides will have been affected by streaming four times per day. If tidal erosion of bedrock were even only marginally efficient, the ~10 million streamings since then should have left geomorphological imprints. We examine high‐resolution multibeam sonar data from three areas with extreme tidal currents. The Minas Passage (Bay of Fundy) experiencing 8‐knot surface tidal currents was surveyed in 2007 with a multibeam sonar. In an area near to transverse dunes, which are evidence for bedload transport, the data show local overhanging surfaces near to the sediment‐rock contact, potentially created by abrasion by saltating particles. However, they are uncommon. In the Straits of Messina, where surface currents reach 10 knots, surveying revealed ridges lying oblique to the flow that are not obviously broken into separate outcrops by erosion. In the Bristol Channel, UK, sonar data collected where currents reach 3·4 knots at 1·5 m above the bed reveal outcrops of limestone with superimposed sand dunes, but only minor rounding of blocks. Holocene tidal currents have apparently been generally ineffective at eroding bedrock. We examine this issue further by compiling extreme tidal streams around the UK and from them estimate shear stresses, representing a macro‐tidal environment where peak surface currents reach 9·7 knots. Those data are compared with shear stresses in mountainous rivers where long‐term rates of erosion are comparable with tectonic uplift rates and are thus geomorphologically significant. Whereas river stresses reach 102–103 Pa, the largest tidal stresses are generally 101 and only rarely approach 102 Pa, too small for quarrying to operate generally. However, the vertical faces in the Minas Passage may represent the onset of abrasion. Given this limited evidence for abrasion, we explore conditions in the geological past for tides that may have locally eroded bedrock. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
M. E. Grismer 《水文研究》2014,28(2):161-170
Establishment and ‘crediting’ for total maximum daily loads (TMDL) of sediment require development of stream monitoring programs capable of detecting changes in land use and erosion ‘connectivity’ conditions across the watershed. As a ‘proof of concept’ directed at developing such an effective stream monitoring program considering only the effects of soil disturbances or restoration in the Lake Tahoe Basin, variability in daily stream sediment load predictions from a local‐scale, field data–based distributed runoff and erosion model developed previously is analysed for the west‐shore watersheds of Homewood (HMR) and Madden Creeks. The areal extent effects of forest fuel reductions (slight soil disturbances in Madden) and soil restoration efforts (e.g. dirt road removal and ski‐run rehabilitation in HMR) on watershed daily sediment loads for the 1994–2005 period are considered. Based on model predictions, forest fuel management in the Madden Creek watershed must occur across more than 30% of the basin area to result in a detectable increase in daily sediment loads at the >95% confidence level. Similarly, a daily load reduction that could be assessed with >95% confidence within the HMR basin required substantial dirt road removal (50% by roaded area) and restoration of 20% of the ski‐run area (combined for ~5% of the basin area) for the 11‐year record but was also possible within 2–3 years following restoration. These modelling results suggest that despite considerable flow–load variability, it may be possible to detect cumulative changing land‐use conditions within several years of project completion such that quantitative TMDL ‘crediting’ may be developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A portable field wind tunnel was used to assess the sediment flux rates of loam and sand textured soils in the Mallee region of southeastern Australia. Three levels of crust disturbance (nil, moderate and severe) simulating stock trampling were investigated. The results demonstrated the importance of cryptogamic crusts in binding the soil surface and providing roughness after the soil was moderately disturbed. On the loamy soil, the crust helped maintain sediment flux rates below the erosion control target to 5 g m−1 s−1 for a 65 km h−1 wind measured at 10 m height. Once the crust was severely disturbed, sediment fluxes increased to 1·6 times the erosion target. On the sandy soil, even with no crust disturbance the sediment flux was 1·6 times the erosion control target. Disturbing the crust increased sediment fluxes to a maximum of 6·7 times the erosion control target. Removal of the crust also decreased the threshold wind velocity that resulted in an increase to the risk of erosion from <5 per cent to 20 per cent. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号