首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 136 毫秒
1.
利用WRF模式对2015年热带气旋(TC)"苏迪罗"发展演变过程开展高分辨率数值模拟,模式较好地再现了"苏迪罗"路径、强度、高低空环流、云系演变和降水分布等。应用三维地面降水诊断方程对"苏迪罗"海上活动时段的降水物理过程模拟诊断指出,QWVA(三维水汽通量辐合辐散率)对TC环流区域内降水相关的水汽相关过程变率(QWV)变化起主导作用,但环流区域内QWVL(垂直积分负的水汽局地变化率)和QWVE(海面蒸发率)亦有重要贡献(尤其是后者),尽管QWVE贡献明显小于QWVA,但由环流区域外辐合来的水汽也可能主要源于区域外不同海域的海面蒸发,海面蒸发的总体贡献应更大。海上活动时段云相关过程变率(QCM)特征及变化与QWV相比更为复杂,环流区域内的QCLL(负的液相水凝物局地变率)基本维持正值(液相水凝物持续减少),其消耗主要用于向冰相水凝物转化和地面降水,以及向区域外的三维通量辐散,6日04时之前,环流区域内QCIL(负的冰相水凝物局地变率)的变化主要归因于微物理转化及地面降水,而6日04时之后,来自环流区域外的通量辐合也有一定作用;降水强度逐渐增强时期,水凝物含量的短暂增长(负值QCLL和QCIL)主要归因于明显增强和垂直扩展的上升运动,伴随上升运动增强,水凝物含量明显增加,霰融化(Pgmlt)和雨滴碰并云滴(Pracw)是造成雨滴含量增加的主要微物理过程。"苏迪罗"环流内区域和时间平均的降水效率高达96%,其中QWVA是主要贡献项,而QWVE和QWVL亦有重要贡献,这与TC所处海洋下垫面有关,海上活动时段,充足的降水源和较小的降水汇共同造成此时段的高降水效率,雨滴生成主要微物理来源中,Pgmlt约占Pracw的72%,体现出海上活动时段TC环流内旺盛的深对流活动特征。  相似文献   

2.
陆婷婷  崔晓鹏 《大气科学》2022,46(2):359-379
利用WRF模式,结合三维降水诊断方程,对2016年北京“7·20”特大暴雨过程主降水时段的强降水物理过程开展了高分辨率模拟诊断分析。结果显示:降水峰值时刻前,强盛水汽辐合支撑强降水,同时加湿大气,后期,水汽辐合显著减弱,降水造成局地大气中水汽含量明显减少;降水峰值时刻前,水汽辐合、凝结和液相水凝物辐合共同助力强降水云系快速发展,后期,动力辐合作用减弱以及水凝物持续消耗和辐散,导致水凝物含量显著减少,降水系统逐步瓦解;主降水时段,垂直上升运动强度和垂直扩展范围逐步增大,并在降水峰值时刻达最大,之后减弱收缩;上升运动峰值高度从初期位于零度层上逐步降到零度层附近,进而回落到零度层之下,伴随“弱—强—弱”的降水强度变化;上升运动控制下,水凝物含量变化明显,但不同水凝物变化幅度不一,霰粒子和雨滴增幅最显著,并于降水峰值时刻含量达最大,随后减小,其他水凝物由于微物理转化和动力辐散等过程,导致其含量的变化幅度弱于上述两者。本文研究同时指出,不同微物理参数化方案对“7·20”特大暴雨强降水物理过程的可能影响以及不同强度降水物理过程的差异,值得深入研究。  相似文献   

3.
“碧利斯”(0604)暴雨过程不同类型降水云微物理特征分析   总被引:2,自引:3,他引:2  
本文利用"碧利斯"(0604)暴雨增幅过程高分辨率的数值模拟资料, 将降水分成对流降水和层云降水, 对比分析了不同类型降水云微物理特征和过程的差异, 探讨了不同类型降水对暴雨增幅的贡献, 结果指出:(1)暴雨增幅前, 降水基本为层云降水, 对流降水只存在于零星的几个小区域, 暴雨增幅发生时段, 对流降水所占比例较暴雨增幅前有显著增加, 平均降水强度达层云降水强度的3倍多。(2)暴雨增幅时段, 云系发展更加旺盛, 云中各种水凝物含量较增幅前明显增加, 其中, 对流和层云降水区云中水凝物含量均有一定程度增长, 但对流降水区增加更显著;而无论增幅前还是增幅时段, 对流降水区云中水凝物含量均要明显大于层云降水区, 并且两者的这种差异随着地面降水强度的增强而增大。(3)暴雨增幅前后, 对流降水区雨滴的两个主要来源最终均可以追踪到云水, 通过云水与大的液相粒子(雨滴)和大的固相粒子(雪)之间、以及大的固相粒子(雪和霰)之间的相互作用和转化, 造成雨滴增长, 并最终形成地面降水, 而层云降水区中与雨滴形成相关的上述主要云微物理过程明显变弱, 但层云降水区中暴雨增幅时段的上述过程又要强于增幅前, 说明层云降水对暴雨增幅也有一定贡献。  相似文献   

4.
薛一迪  崔晓鹏 《大气科学》2020,44(6):1320-1336
利用WRF模式,结合三维降水诊断方程和降水效率定义,针对1409号超强台风“威马逊”临岸迅速加强为超强台风并登陆我国华南沿海这一时段的强降水物理过程开展了高分辨率数值模拟诊断研究。结果表明,“威马逊”主体环流区域内一直维持很强的平均降水强度(PS),陆地和海洋PS的相对贡献基本呈反向变化,登陆期间陆面摩擦辐合增强,有利于水汽更多地向陆地区域辐合(QWVA代表垂直积分的三维水汽通量辐合/辐散率,此时段QWVA为正值),造成登陆前短时段内陆地上空局地大气增湿(QWVL代表垂直积分的水汽局地变化率的负值,此时段Q WVL为负值),借助云微物理过程快速转化为液相和固相云水凝物(QCLL和QCIL分别代表垂直积分的液相和固相云水凝物局地变化率的负值,此时段QCLL和QCIL为负值),促使陆地上空降水云系快速发展和降水强度增强,而当环流中心位于北部湾洋面时,海洋QWVA的相对贡献显著增强,登陆期间下垫面的变化导致水汽相关物理过程明显变化,进而造成降水云系和强降水中心的显著变化;与陆地相比,海洋表面蒸发的作用更强,变化更明显;“威马逊”影响华南沿海期间,主体环流圈内平均的QCLL和QCIL均基本呈现“正—负—正”的变化特征,当环流中心位于北部湾洋面(三次登陆时期)时水凝物含量以增加(减少)为主;“威马逊”主体环流区域内一直维持高降水效率,从主体环流圈接触陆地开始,陆地降水效率迅速升高,而海洋降水效率在绝大多数积分时段内维持较高数值,只在第二和第三次登陆后有所降低。  相似文献   

5.
GCE(Goddard Cumulus Ensemble)模式中体现了云与云之间的相互作用,以及云与周围环境、长波辐射及示踪气体等之间的相互作用.模式可通过云中的水凝物等微物理量描述云体的生命史(发展、成熟、消散),并在此基础上通过引入地面降水诊断方程对降水的发展过程进行分析,因而降水过程实际上是云的发展过程的体现.本文所使用的二维云分辨模式(2DCRM)就是GCE模式的二维版本.利用该模式对2008年6月10-15日的华南暴雨过程进行模拟,分析了主要降水时段地面降水收支及热量收支在不同降水发展阶段的特征.模拟结果表明,在降水初始阶段,主要由局地大气增湿和水汽辐合率减小来抑制降水发展;在成熟阶段,局地水汽变化、水汽辐合、地面蒸发和局地水凝物变化均有正的贡献,降水强度达到最大;在衰退阶段,降水强度减小的主要原因是水汽辐合显著减小.在降水性层状云区,降水主要来自于水汽辐合,水汽的主要消耗项是局地水汽增加;在对流云区,降水主要来自于水汽辐合与局地大气变干,水汽的主要消耗过程是水凝物生成并向降水性层状云区输送.初始阶段和衰退阶段的局地大气温度变化率相对较小,成熟阶段区域平均大气冷却达到最强,区域平均大气温度变化率主要受区域平均的热辐散率与区域平均的潜热释放影响.  相似文献   

6.
利用WRF模式,在前期工作(王晓慧等,2018)模拟试验基础上,设计敏感性试验,借助三维降水诊断方程,分析揭示了海表温度(SST)变化对热带气旋(TC)“苏迪罗”(2015)海上活动时段降水物理过程的可能影响。对照试验(CTL试验:SST随时间变化)和敏感性试验(SNC试验:SST固定为初始值)的SST存在明显差异(CTL试验平均SST低于SNC试验)。对比分析表明:两试验模拟的海上时段TC路径差异不大,但SNC试验模拟的TC强度较CTL试验偏强;TC环流区域内,两试验垂直速度差值在对流层基本为正(SNC试验上升运动更强),随着SST差值不断增大,垂直运动差值也不断加大;SNC试验的降水强度(PS)大于CTL试验,但PS差值随SST差值增大并非线性变化,体现了PS变化的复杂性;SNC试验的QWVA(垂直积分的三维水汽通量辐合/辐散率)均基本大于CTL试验(后期差别更大),SST的不同可通过影响垂直运动,造成QWVA的差异,进而影响PS;分析时段内,两试验TC环流区域大气均持续变干(正值QWVL),且存在较明显海面蒸发(正值QWVE),其中,两试验之间的QWVL差异不明显,但SNC试验的QWVE总体上强于CTL试验(尤其是分析时段中后期);两试验间云相关过程变率差异的时间变化复杂,最大差异量级与QWVE相当;SST对水凝物发展和深对流活动有一定影响,伴随SST差异的逐渐增大,水凝物含量差异也逐渐增大,液相水凝物中,雨滴差异较大,而与液相水凝物相比,冰相水凝物差异更为突出,尤其是较大的冰相粒子(雪和霰);SNC试验中,零度层下更多的霰粒子和雨滴,在更强上升运动配合下,有助于云滴和雨滴碰并(Pracw)及霰粒子融化(Pgmlt)微物理过程的加强,进而造成更强降水。TC环流区域时间和空间平均的物理量对比分析揭示,两试验降水物理过程定性上基本相似,但定量上存在明显不同,SNC试验的PS与CTL试验相比,增幅达8.8%,这种差异主要源于降水宏、微观物理过程的差异,其中,不同SST环境下QWVE的差异最为显著。  相似文献   

7.
西南季风与登陆台风耦合的暴雨增幅诊断及其数值模拟   总被引:3,自引:1,他引:2  
以登陆内陆后维持时间长、暴雨增幅的热带气旋"碧利斯"(0604)为研究对象,利用"CMA-STI"热带气旋最佳路径数据集、NCEP/NCAR再分析资料及地面加密观测资料,讨论了西南季风与登陆台风耦合的暴雨增幅,分析了台风涡旋周围的水汽收支特征,发现净西风、净南风输送为暴雨提供了充足的水汽,在"碧利斯"登陆大陆减弱西行的过程中,西南季风对登陆台风的维持和暴雨增幅有重要影响。利用WRF(weather research and forecasting)模式模拟"碧利斯"登陆后的降水表明,该模式能够较好地模拟降水强度和暴雨落区,模拟路径与台风实际路径走向大体一致,但存在一定偏差;季风涌爆发时,台风中心南侧降水出现明显增幅。敏感性试验结果表明,降水强度对水汽输送大小较敏感,水汽输送减弱致使降水强度明显减弱,可见西南季风的水汽输送对暴雨的影响至关重要。  相似文献   

8.
地面降水诊断方程对降水过程的定量诊断   总被引:9,自引:5,他引:4  
崔晓鹏 《大气科学》2009,33(2):375-387
降水, 尤其是强降水 (暴雨), 对国家经济发展、 社会建设以及人民生活影响巨大, 然而由于同降水相关的物理过程非常复杂, 因此, 对降水的研究与预测十分困难。过去有关降水的研究大多关注水汽及水汽辐合 (输送) 的影响, 对与降水有关的水汽收支研究较多。Gao et al.(2005a) 率先将大气中水汽和云中水凝物 (云水、 雨水、 云冰、 雪及霰等) 的变化方程结合起来, 得到一个地面降水诊断方程, 从而可以将与降水有关的大气中水汽和云的演变过程在同一框架下定量地分析研究。本文利用一套21天长度的热带云分辨尺度模拟资料, 通过计算地面降水诊断方程中的局地水汽变化、 水汽辐合辐散率、 地面蒸发率以及云的变化率等各项, 分析了这些物理过程对降水的贡献, 指出局地水汽和云的变化率、 水汽辐合率, 地面蒸发率等均对地面降水有重要贡献。区域平均资料分析表明, 若水汽辐合与局地大气变干共存, 则产生强降水; 若存在水汽辐合但局地大气增湿或者存在水汽辐散但局地大气变干, 则引起中等强度降水; 若水汽辐散与局地大气增湿共存, 则造成弱降水。将降水划分成对流和层状降水进行分析发现, 对流降水率一般大于层状降水率, 水汽辐合是对流降水最主要的水汽源, 而局地大气变干则是层状降水最主要的水汽源。区域平均局地大气变干主要发生在降水性层状云区, 而最强的局地大气增湿则发生在对流云区和晴空区; 最强的局地云的消散发生在层状云区, 而最强的局地云的发展发生在对流云区。  相似文献   

9.
针对2005年7月22日的发生于华北的暴雨中尺度对流系统,在用中尺度ARPS模式数值模拟和分析云场、动力场以及微物理过程释放的潜热垂直分布和作用特征的基础上,通过改变主要微物理过程潜热做敏感性数值试验,研究和分析了潜热对云系发展演变、云系宏观动力场、水汽场、云场和降水的影响,总结出云暖区潜热的影响途径。结果表明,在对流云团中,5000 m以上微物理过程起加热作用,以下起冷却作用。不同物理过程潜热加热的云层高度不同:高层起加热作用的主要为水汽凝结、云冰初生和雪凝华增长、霰撞冻云水过程;中层起加热/冷却作用的主要为水汽凝结、霰/雹融化过程;低层雨水的蒸发过程起冷却作用。微物理过程潜热通过影响云系和降水发展过程、云系动力场,进而影响水汽场、云场和降水。忽略霰/雹融化潜热,相当于增加云系暖区潜热,促进了低层气旋性环流的形成,增强了低层动力场的辐合,使得低层辐合区增多、增强;中低层水汽通量辐合区增多、面积扩大,明显地促进了对流云系的发展,增大了含水量和覆盖范围,云系的降水量显著增加,强降水区覆盖范围扩大。即使减少20%的凝结潜热,云系的发展也受到极大抑制,没有气旋性环流生成,低层辐合区缩小、强度降低,水汽通量辐合区也同样缩小、强度降低,云系对流发展减弱、含水量降低,因此,降水量大为减小,降水范围也显著缩小。此外,微物理过程潜热还影响到此次中尺度对流系统发展演变过程,改变了云系的形态、影响到系统的移动和系统中对流云团的发展强度和分布情况。  相似文献   

10.
采用日本气象厅的最佳台风路径及强度资料、NCEP/NCAR逐6 h细网格再分析数据,分析了"利奇马"暴雨影响相关的云水含量、假相当位温、水汽通量散度、Q矢量、湿位涡等物理量;通过苏州雨滴谱资料,分析降雨强度、雨滴数密度、雨滴平均直径、雨滴含水量、雷达反射率因子、雨滴谱宽等微物理量特征。结果表明降水落区位于环境垂直风切变顺切的左侧。暴雨期间能量和水汽条件较好,低层Q矢量梯度使辐合上升增强,且其非对称性对暴雨落区有指示意义,湿位涡的发展也有利于暴雨的加强;另外,微物理分析表明冷云降水机制使降水效率大幅提高,雨滴谱能较好地反映台风降水特征,强降水主要由层状云中嵌入的对流降水引起。强降水时段雨滴谱的相关微物理量等都呈现较大值。  相似文献   

11.
High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall. The results showed that: (1) In the strong precipitation period, particle sizes of all hydrometeors increased, and mean-mass diameters of graupel increased the most significantly, as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors, followed by graupel’s, which was much smaller than that of raindrops. Differences between various hydrometeors’ terminal velocities in the strong precipitation period were larger than those in the weak precipitation period, which favored relative motion, collection interaction and transformation between the particles. Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity, and the stronger the precipitation was, the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors’ sources and sinks in the strong precipitation period were larger than those in the weak precipitation period, causing a difference in the intensity of precipitation. Water vapor, cloud water, raindrops, graupel and their exchange processes played a major role in the production of the torrential rainfall, and there were two main processes via which raindrops were generated: abundant water vapor condensed into cloud water and, on the one hand, accretion of cloud water by rain water formed rain water, while on the other hand, accretion of cloud water by graupel formed graupel, and then the melting of graupel formed rain water.  相似文献   

12.
Using the numerical model of mixed convective-stratiform clouds(MCS)in the paper(Hong1997)and the averaged stratification of torrential rain processes,the evolution processes,interaction of the two kinds of clouds,structure and the precipitation features in the MCS toproduce heavy rain are simulated and studied,and the physical reasons of producing torrential rainare analysed.The results indicate that the stratiform cloud surrounding the convective cloudbecomes weakened and dissipates in the developing and enhancing of the convective cloud,and therainfall rate and water content in the stratiform cloud increase as the distance from the convectivecloud becomes larger.The numerical experiments find out that the stratiform cloud provides abenificial developing environment for the convective cloud,i.e.,the saturated environment and theconvergence field in the stratiform cloud help to lengthen the life cycle of the convective cloud,produce sustained rainfall with high intensity and intermittent precipitation with ultra-highintensity.These and the ice phase microphysical processes are the main factors for the torrentialrain formation and the MCS is a very effective precipitation system.  相似文献   

13.
CAMS复杂云微物理方案与GRAPES模式耦合的数值试验   总被引:8,自引:3,他引:5       下载免费PDF全文
CAMS复杂云微物理方案是混合相双参数方案, 包括11个云物理变量和31个云物理过程, 能够同时预报水成物的比质量和数浓度。通过在GRAPES非静力中尺度模式中增加预报量并修改相关程序后, 实现了二者的耦合, 耦合后模式运行稳定。选取2005年8月15—17日我国华北地区一次暴雨过程, 利用耦合后的模式进行48 h模拟试验, 同时还选取了GRAPES模式中其他3个比较复杂的微物理方案进行模拟, 着重分析了降水和水成物分布的模拟结果。研究结果表明: CAMS方案能够模拟出与实测相接近的雨带分布特征, 并且对降水演变的模拟结果与其他方案比较一致, 对暴雨中心位置的模拟有待改进。CAMS方案模拟的水成物垂直分布与其他方案相比具有相似的总体特征, 各相态粒子的量级和分布合理, 不同方案的结果在量值上有所差别。个例分析结果显示出CAMS方案对降水和水成物的分布能够合理描述。今后应通过更多个例进行更为精细的模拟试验, 对新方案进行检验。  相似文献   

14.
Typhoon KROSA in 2007 is simulated using GRAPES, a mesoscale numerical model, in which a two-parameter mixed-phase microphysics scheme is implanted. A series of numerical experiments are designed to test the sensitivity of landfalling typhoon structure and precipitation to varying cloud microphysics and latent heat release. It is found that typhoon track is sensitive to different microphysical processes and latent heat release. The cloud structures of simulated cyclones can be quite different with that of varying microphysical processes. Graupel particles play an important role in the formation of local heavy rainfall and the maintenance of spiral rainbands. Analysis reveals that the feedback of latent heat to dynamic fields can significantly change the content and distribution of cloud hydrometeors, thus having an impact on surface precipitation.  相似文献   

15.
A moist thermodynamic advection parameter, defined as an absolute value of the dot product of hori- zontal gradients of three-dimensional potential temperature advection and general potential temperature, is introduced to diagnose frontal heavy rainfall events in the north of China. It is shown that the parameter is closely related to observed 6-h accumulative surface rainfall and simulated cloud hydrometeors. Since the parameter is capable of describing the typical vertical structural characteristics of dynamic, thermodynamic and water vapor fields above a strong precipitation region near the front surface, it may serve as a physical tracker to detect precipitable weather systems near to a front. A tendency equation of the parameter was derived in Cartesian coordinates and calculated with the simulation output data of a heavy rainfall event. Results revealed that the advection of the parameter by the three-dimensional velocity vector, the covariance of potential temperature advection by local change of the velocity vector and general potential temperature, and the interaction between potential temperature advection and the source or sink of general potential temperature, accounted for local change in the parameter. This indicated that the parameter was determined by a combination of dynamic processes and cloud microphysical processes.  相似文献   

16.
霰粒子下落速度对云系及降水发展影响的数值研究   总被引:1,自引:0,他引:1  
云和降水的形成是动力过程与微物理过程相瓦作用的产物,云数值模式中的微物理过程参数化方案对云和降水发展过程有直接影响.在云数值模式中,粒子群体的下落速度都足用质量加权下落末速度公式来表达,而且不同的模式采用的公式存在差异,质量加权下落末速度中参数取值不同,引起的粒子下落末速度不同.为了了解粒子下落末速度变化对云系和降水发展的影响,对2004年8月12日一次冷锋降水过程,利用中尺度ARPS模式做模拟研究.在分析降水机制的基础上,对霰这一下落末速度较大的降水粒子,做下落末速度(Vg)的敏感性试验,从动力、热力、微物理的角度,通过数值模拟对比分析了霰下落末速度减小对降水分布和强度、云系的移动、云系的宏观热力和动力场的影响,并给出了影响的途径和机理.结果表明:Vg变化对云的厚度和含水量有影响,下落末速度减小对冰晶、雪、霰的含水量垂直分布及分布随时间变化影响较大,其中,霰的含水量显著减少,雪的含水量增加,并调整了云中水质粒的空间分布;Vg减小对地面累积总降水量的分布影响较小,但对降水强度的分布影响较大.Vg减小时,降水强度减小,降水时间延迟,因此,霰下落末速度变化将调整底层降水分布;对于云系的移动情况基本上没有影响,但对云中水质粒的空间分布有影响;霰下落末速度变化影响云中霰的融化和撞冻增长从而影响热力场.末速度减小时,霰和雪的融化罱明显减小,导致非绝热冷却率的减小,引起下沉气流的减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号