首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
王颖  郑永光  寿绍文 《气象》2009,35(10):58-70
对2007年夏季(6-8月)我国长江流域及其周边地区(25°~38°N、100°~122°E,不包括甘肃、山东)地闪分布与不同区域的日变化特征进行了分析,并与同期雷暴日分布和FY-2C红外亮温(TBB)≤-52℃频率分布、低轨卫星8年观测的闪电分布及11年静止卫星TBB≤-52℃频率日变化进行对比,结果表明不同资料获得的对流活动时空分布具有很大的一致性.江淮流域、川渝、浙江西北部、武夷山中段的地闪活动较其周边区域明显比多年星载观测的闪电活跃.地闪活动7、8月较6月活跃且活跃区位置偏北,7月最为活跃的正地闪反映了该月长江中下游地区有较多中尺度对流系统发生发展.不同区域的地闪活动具有不同的日变化特征,江淮流域和川渝地区地闪日变化表现出多峰型特征,浙赣闽区域地闪活动的单峰型特征显著;其中江淮流域、浙赣闽区域的地闪活跃时段在午后,而川渝地区地闪活动夜发性显著;四川盆地西南部地闪呈现出明显的向东、向北传播特征;川西高原、云贵高原中部及浙闽丘陵沿海地区正、负地闪日变化差异较大.浙赣闽区域和川西高原地区正负地闪活跃时段基本一致,江淮流域、川渝地区和贵州地区负地闪活跃时段提前于正地闪,这几个区域的正地闪活跃时段都提前于TBB≤-52℃频率.这表明负地闪日变化特征较好地反映了初始深对流的日变化特征,而正地闪与TBB≤-52℃频率则较好地反映了成熟与消散阶段的深对流日变化特征.  相似文献   

2.
青藏高原对流时空变化与东亚环流的关系   总被引:4,自引:3,他引:4  
根据1980~1998年逐日TBB和NCEP/NCAR再分析资料,探讨青藏高原对流(TBB)时空分布与东亚环流及天气气候的关系.研究指出,青藏高原主体地区(28°N~34°N,80°E~102°E)的对流冬弱、夏强,存在显著的6月和10月突变现象.夏季亚洲地区最强的对流出现在青藏高原上空,呈现为高原西部(28°N~34°N,82°E~94°E)和东部(27°N~34°N,104°E~110°E)型.夏季青藏高原上空对流弱,850 hPa风场上高原南、北侧的东亚地区分别呈现西风距平,夏季中国易出现南北二条雨带; 夏季高原上空对流强,850 hPa风场上的西风距平出现在东亚30°N附近,夏季易出现江淮流域雨带.夏季江淮流域洪涝年(如1980、1993、1996、1998年)与青藏高原东、西部对流同时加强有关; 夏季江淮流域干旱年(如1992、1994、1997年)与青藏高原东、西部对流同时减弱有关.20世纪90年代,江淮流域洪涝与干旱事件频繁发生可能与青藏高原东、西部对流强度变化出现同位相的年代际变化趋势有关.  相似文献   

3.
祁秀香  郑永光 《气象》2009,35(11):17-28
2007年夏季川渝地区及江淮流域持续性降水、极端强降水和强对流事件频发.利用强暴雨发生时段2007年6月28日至7月26日逐时FY-2C红外TBB资料对这两个地区及周边区域(25°~38°N、100°~130°E)进行普查,共获得570个生命史≥3小时的中尺度对流系统(MCS).MCS的定义为-52℃ TBB闭合等值线内TBB≤-52℃的面积≥400km~2,不区分形状与生命史.MCS识别由计算机自动完成,MCS追踪由人工完成.普查结果发现,云南西北部至四川西部、四川东部与重庆、云贵高原东部和广西北部山区至洞庭湖、淮河流域四个区域是MCS活跃区,但淮河流域又有三个波动状MCS活跃中心.普查区域内总体MCS和川渝地区活动最频繁的MCS持续时间为3~7小时,但江淮流域活动最频繁的MCS生命史为4~9小时.按时间尺度将570个MCS分成三类,第一类MCS生命史3~5小时,第二类MCS生命史6~11小时,第三类MCS生命史≥12小时.三类MCS的地理分布特征及触发机制各不相同:第一、二类MCS在西太平洋副高平均位置的内、外侧都有发生,它们的发生、发展及移动受中尺度因素影响明显,可能与地形、中尺度辐合线等有关;第三类MCS发生在西太平洋副热带高压平均位置的外侧,其发生、发展及移动路径受天气尺度环境控制因素显著.三类MCS日变化具有明显不同的日变化特征.三类MCS的形成高峰都出现在午后.第一类MCS无显著的夜发性特征,第二、三类MCS有较显著的夜发性特征.第一、二类MCS在午后最活跃,但第三类MCS活动最活跃时段在下半夜(18UTC).川渝地区和江淮流域的MCS都具有多峰型日变化特征,但二者的活跃时段有所不同.本文还给出了2个引发强降水的MCS典型个例及1个长生命史MCS演变特征.  相似文献   

4.
西南地区东部夏季典型旱涝年的OLR特征   总被引:6,自引:1,他引:5       下载免费PDF全文
利用1959—2006年西南地区东部20个测站的逐日降水量资料和1979—2006年全球OLR(Outgoing Longwave Radiation)逐日格点资料, 分析了西南地区东部夏季典型旱涝年OLR的异常特征。结果表明: 按照区域降水指数可确定3个典型干旱年(2006, 1994和1997年)和3个典型洪涝年(1998, 1980和1993年), 而1998年和2006年分别是1959年以来西南地区东部降水偏多和偏少最明显的年份。西南地区东部典型旱涝年夏季OLR分布有明显的差异, 洪涝(干旱)年, 从青藏高原东部一直到江淮地区OLR值偏低(高), 同时孟加拉湾南部及赤道东印度洋地区OLR值也偏低(高), 而菲律宾及其附近地区OLR值偏高(低)。从3个关键区平均的逐日变化来看, 赤道东印度洋地区对流活动典型涝年强于典型旱年, 菲律宾及其附近地区对流活动则是旱年强于涝年, 青藏高原东部至江淮流域地区(包括西南地区东部)极端涝年盛行上升运动。涝年热带地区的ITCZ以向西移动的特征为主, 而旱年热带地区的ITCZ夏季前期则以向东移动的特征为主。典型涝年孟加拉湾南部及赤道东印度洋地区的对流北传的特征较明显, 6月中旬以后大部分时间可以传到30°N以北, 典型旱年孟加拉湾南部及赤道东印度洋地区的对流主要呈现南北振荡、 偶有中断的活动特征, 很少时间能达到30°N。低纬热带地区关键区域OLR 5~9月一般都具有准40天左右的显著低频变化周期, 而准12~15天的准双周变化周期在部分时段也显著。典型涝年夏季OLR 40天左右低频对流经向和纬向传播在西南地区东部区域得到加强, 低频对流偏强, 引起降水偏多, 而典型旱年夏季则相反, OLR 40天左右低频对流经向和纬向传播在该区域得到削弱, 低频对流偏弱, 引起降水偏少。  相似文献   

5.
中国黄淮西部地貌过渡带(30°-38°N,109°-118°E,山区和平原过渡带)地形复杂,每年夏季强对流天气频繁发生.为了深入了解该地区的对流发展和分布特征,用1996-2010年5-8月静止卫星多通道资料及河南省地面观测的对流天气(雷暴、冰雹、短时强降水)资料,对该地区深对流活动的时空分布及天气意义进行了统计和对比研究.结果显示:黄淮西部地貌过渡带及其附近深对流活动的时空分布不仅与气候带关系密切,而且,明显受地形和天气系统影响.淮河流域是深对流活动高发区,豫北和豫西山区是深对流活动次高发区.豫北和豫西山区的深对流主要产生雷暴和冰雹,而淮河流域、南阳盆地等地势较低地区的深对流活动则较多地与雷暴和短时强降水有关.深对流活动随夏季风北进和副热带高压的北抬而具有显着的月际、日际变化及明显的阶段性特征.不同月份的深对流活动日变化特征显着不同,表现出两种性质的对流活动,一种为持续时间较短的热对流,一种为大尺度天气系统控制的持续性对流.豫北深对流活动日变化主要为单峰型,且具有自西北向东南方向传播的特征;豫南深对流活动日变化表现为双峰结构.  相似文献   

6.
基于ERA-Interim逐日4时次再分析资料和753站逐日降水资料,对1980—2013年江淮流域夏季降水特征进行分析,探究江淮流域夏季低频降水的前期预报信号,结果表明:1)江淮流域夏季降水受10~30 d低频振荡影响显著,10~30 d低频分量在江淮流域夏季降水中占较大比重。2)200 hPa上,低频降水过程发生前9~6 d有低频反气旋(低频气旋)自青藏高原东北部向中国东部移动。500 hPa上超前低频降水过程9 d至低频降水过程发生时有西太副高自东向西(自西向东)移动至中国东部沿海地区,热带地区负(正)低频OLR中心不断向北移动,最北端到达江淮流域并达到最强,进而促进(抑制)江淮流域低频降水的发生。3)青藏高原预报信号能够有效补充西太副高及热带OLR信号的不足,将青藏高原信号、西太副高信号及热带OLR信号作为综合预报因子对江淮流域降水进行预报,对仅依赖低纬度地区信号进行降水过程预报的准确率有较好改进作用。  相似文献   

7.
江淮流域夏季典型旱涝年大气中的水汽输送和收支   总被引:9,自引:3,他引:9  
该文利用NCEP/NCAR再分析资料对中国东部区域1991年和1994年这两个夏季旱涝典型年的降水状况、水汽输送及收支状况等进行了综合定量对比分析,结果表明:江淮流域夏季旱涝形势的形成更多地取决于流经其上的东西向水汽输送的变化。南亚夏季风强弱的变化对江淮流域的旱涝形成可能具有更为重要的影响。中国东部夏季的偏西水汽输送主要来自西南地区西边界,江淮流域夏季干旱年该地区西边界的水汽输入明显比洪涝年减少,因而在未来的中国东部旱涝预测中要特别重视西南地区西边界的水汽输送状况。  相似文献   

8.
《高原气象》2021,40(3):472-485
利用2004-2017年静止气象卫星Kalpana-1的高分辨率(空间分辨率0.25°×0.25°,时间分辨3 h一次,每天8个时次)射出长波辐射(Outgoing Longwave Radiation,OLR)资料,分析了青藏高原和南亚地区夏季对流的日变化特征,并结合ERA-Interim分析资料和中国常规降水观测资料对2006年和2007年的对流活动异常、垂直速度异常、降水异常三者的联系进行研究。结果表明:(1)青藏高原和南亚地区夏季6-9月有非常明显的对流活动,其中在对流活动最强的盛夏7-8月,青藏高原中部和东南部、印度半岛东北部、孟加拉湾到中南半岛都有大范围的强对流区,强度最强的对流区OLR平均最小值低于190 W·m~(-2)。(2)青藏高原和南亚地区对流活动日变化特征明显。其中青藏高原中南部、青藏高原东南部、印度半岛东北部和中南半岛南部地区都在09:00(世界时,下同)左右开始出现OLR低于210 W·m~(-2)的强对流区,在12:00左右对流活动强度达到最强,对流活动均可持续到次日凌晨。孟加拉湾东海岸全天都有明显的对流活动,在09:00和21:00的2个时次达到最强。对比青藏高原、南亚和孟加拉湾地区,青藏高原中南部地区的对流日变化最为显著,陆地区域对流日变化是一个周期,而孟加拉湾东岸地区的日变化有两个周期。(3)对比分析2006年和2007年7-8月青藏高原地区和中国西南地区的OLR异常变化与垂直速度和降水异常可以发现,高分辨率的OLR负(正)距平表示的异常强(弱)对流与异常上升(下沉)运动及异常多(少)的降水三者之间密切相关,可以用来表征青藏高原地区对流活动的变化特征,以弥补其观测资料的不足。  相似文献   

9.
我国暖季深对流云分布与日变化特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
陈国春  郑永光  肖天贵 《气象》2011,37(1):75-84
本文利用1996-2008年近12年3-10月(无2004年资料,部分时段资料缺失)的地球静止卫星逐时多通道(红外1、红外2和水汽通道)数字云图资料给出了我国及周边地区暖季深对流云时空演变特征,并对比分析了相关文献中的雪暴日数分布及低轨卫星观测的闪电密度分布.本文以TBir1(红外1通道亮温)≤-52℃、TBir1-TBir2(红外2通道亮温)<3 K、TBir1~TBir2(水汽通道亮温)≤8 K来识别深对流云.分析结果表明:我国暖季有4个深对流云活跃区域,分别为青藏岛原中东部、华南和云贵高原东北部、新疆伊犁河谷及周边区域、浙闽赣大部分区域;总体来看深对流云夏季(6-8月)最活跃,春季(3-5月)次之,秋季(9-10月)最不活跃;不同季节深对流云地理分布特征显著不同;不同季节、不同地区的深对流云日变化特征具有明显差异,秋季日变化最不显著;由于春季日落时间早于夏季,一般说来深对流云日变化主峰时段春季早于夏季;青藏高原中东部、两广丘陵与浙闽丘陵地区深对流云都为单峰型日变化;四川盆地深对流云具有显著的夜发性特征;江淮地区春夏季节深对流云日变化都为双峰型,这可能与该区域较多MaCS密切相关;青藏高原中东部热对流比较活跃;夏季两广丘陵、四川盆地和江淮地区不仅热对流活动频繁,其他天气系统(比如台风、梅雨锋等)触发和维持的对流活动也非常活跃.  相似文献   

10.
王欢  李栋梁 《气象学报》2019,77(2):327-345
全球变暖背景下,中国东部夏季降水在20世纪70年代末开始较19世纪呈现东北及长江中、下游地区多雨,华北及华南少雨的特征。与此同时,人类活动排放的CO2及气溶胶量也发生了明显的年代际变化。文中利用地球系统耦合模式(CESM)诊断了中国东部夏季的水分收支对人类活动排放的CO2及气溶胶年代际变化的响应。发现CO2排放量增加后,江淮流域的水汽辐合以及中国南方的水汽辐散主要是与质量辐散有关的动力项及与湿度梯度相关的热力项共同作用的结果,但动力作用更显著。气溶胶效应则主要通过动力作用使得江淮流域水汽辐合,而中国南方地区水汽辐散。虽然CO2和气溶胶对辐射量及温度的影响差别很大,但通过改变温度梯度,热成风效应产生的动力作用都会导致江淮流域上升运动增强,降水增多;而中国南方下沉运动显著,降水减少,与观测结果一致,且CO2相较于气溶胶的影响更为显著,证实了20世纪70年代末人类活动对中国东部夏季降水年代际转折的影响。   相似文献   

11.
为进一步认识高原涡对盆地西南地区暴雨过程的影响,总结该区域暴雨预报经验,本文利用2001~2011年高原涡切变线年鉴、MICAPS实况天气图、盆地西南地区气象站日降雨量资料以及NCEP再分析资料,对引起盆地西南地区暴雨过程的高原涡特征进行总结分析,得到结论:1)引发盆地西南地区产生暴雨量级以上降雨的高原涡过程多发生在每年7月;高原涡东移将对盆地西南地区产生明显降雨;48小时后大部分高原涡减弱消失,少数继续东移或东南移;2)引发盆地西南地区产生暴雨的高原涡通常是暖性高原涡,高原涡东移48小时后有明显的冷平流入侵转变成斜压性低涡;这一类高原涡常常与高原切变、西南低涡、副高、低空急流以及南亚高压等影响系统相配合,共同作用产生一次暴雨过程;3)引发的盆地西南地区暴雨的高原涡过程的温湿场特征为:500hPa高原东部到盆地上空的大气高温高湿的特征明显,700hPa和850hPa盆地高温高湿,同时垂直上升运动旺盛且随高度向北倾斜。   相似文献   

12.
基于1979~2017年欧洲中期天气预报中心(ECMWF)提供的ERA-Interim逐日再分析资料和热力学方程,本研究估算了大气视热源,分析研究了青藏高原夏季大气视热源的异常与中国东部降水关系的年代际变化,以及青藏高原大气视热源影响我国东部夏季降水的物理机制。结果表明:(1)高原热源东、西部反相变化模态的重要性发生了年代际转变,表现为由1994年之前方差贡献相对小的第二变异模态变为1994之后方差贡献明显增大而成为第一主导变异模态。(2)青藏高原夏季大气视热源的东、西反相变化模态与中国东部降水的关系存在年代际变化。1993年之前和2008年之后,高原大气视热源的异常分别仅与长江下游降水和长江中游降水异常存在密切的联系;而在1994~2007年,其对长江流域及附近区域和华南地区的夏季降水的影响显著,具体表现为,当高原夏季大气视热源异常表现为东强西弱(东弱西强)时,长江中上游、江淮地区的降水偏多(少),华南地区降水偏少(多)。(3)高原大气视热源显著影响我国东部夏季降水主要是通过经高原上空发展加强的天气系统东移过程影响长江流域及附近地区的降水,以及通过垂直环流影响华南地区的降水。  相似文献   

13.
NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper. Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007. The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part. As a result, relationships between an atmospheric heating source (hereafter called ) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper. The results are shown as follows. The flood/drought to the north of Yangtze River (NYR) was mainly related to the over the East Asia summer monsoon region: when the over the Philippines through Western Pacific and the south China was weakened (strengthened), it would probably result in the flood (drought) in NYR; and the precipitation on the south side of Yangtze River (SYR) was related to the over the east Asia and Indian summer monsoon region: when the over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened (weakened), and the over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened (strengthened), it will lead to flood (drought) in SYR.  相似文献   

14.
基于青藏高原低涡和切变线(简称高原低值系统)年鉴、国家气象站地面观测资料及ERA-Interim再分析资料,分析了高原低值系统多、少发年夏季高原地气温差变化的差异及其对我国降水的影响。结果表明:(1)高原夏季地气温差对高原低值系统的发生和移动有明显的影响。在低值系统频发区,多发年的地气温差明显比少发年高。(2)我国西部的青藏高原中部、东北部及西南地区在多发年降水偏多,高原南部和东南部则在少发年降水偏多;我国东部地区,多、少发年降水差异自南至北呈“+”、“?”、“+”、“?”、“+”的差值带分布特征,即华南、江淮流域、华北和东北地区降水在多发年偏多,江南地区和黄淮流域降水则在少发年偏多。(3)高原低值系统多、少发年夏季对流层的环流系统及相应垂直速度、水汽输送变化有明显差异,并影响青藏高原和我国降水的变化。在高原地区,多、少发年之间环流的差异是受高原东部和南部的气流辐合(辐散)场、相应的垂直运动差值上升(下沉)、水汽输送辐合(辐散)区域变化的影响;在东部地区,则是受南海到华南、长江流域、华北到东北为气旋(反气旋)环流系统及其间辐合(辐散)带变化的影响。   相似文献   

15.
利用改进的NCAR CCM3气候模式, 研究了1992年西北太平洋持续冷海温对东亚初夏季节大气环流的影响。西北太平洋冷海温不利于初夏东亚南支西风急流季节性北移, 引起亚洲东部沿海低槽明显加深, 东亚大槽平均高度场降低了4.66 dagpm, 从而也不利于西太平洋副热带高压的西伸加强。西北太平洋冷海温还不利于我国大陆初夏温度场回升, 特别是引起我国东北地区近地面温度下降2~5 ℃, 是影响东北冷夏现象的重要原因之一。模拟结果表明, 1992年初夏江淮入梅期较常年偏晚, 降水异常偏少, 与紧邻东亚大陆的西北太平洋持续冷海温有关。  相似文献   

16.
王瑞  李伟平  刘新  王兰宁 《高原气象》2009,28(6):1233-1241
利用耦合的全球海气模式(NCAR CCSM3), 对青藏高原春季土壤湿度异常影响我国夏季7月降水的机制进行了数值模拟。结果表明, 高原6~62 cm深度的中层土壤湿度异常与表层土壤湿度异常有很好的一致性, 相对而言, 中层土壤湿度异常的持续性较好。若5月高原中层土壤偏湿, 则春末至夏初高原地面蒸发、 潜热通量增加, 而感热通量、 地面温度降低, 高原表面的加热作用减弱, 使得印度高压西撤偏晚, 环流系统的季节性转换偏晚, 东亚地区形成有利于我国夏季出现第I类雨型的环流分布形势, 使我国东部雨带偏北, 华北地区多雨, 江淮地区降水偏少, 华南地区降水偏多; 反之亦然。  相似文献   

17.
四川盆地夏季水汽输送特征及其对旱涝的影响   总被引:5,自引:9,他引:5  
蒋兴文  李跃清  李春  杜军 《高原气象》2007,26(3):476-484
利用1981—2000年夏季观测资料,分析了四川盆地夏季平均的水汽输送状况及四川盆地典型旱涝年的水汽输送差异特征,并在此基础上,初步分析了四川盆地旱涝异常的大气环流背景。结果表明:四川盆地的夏季水汽主要来源于青藏高原、孟加拉湾及南海地区。当西太平洋副热带高压偏北偏西时,其外侧东南风可以把南海水汽带到盆地西部,孟加拉湾及青藏高原水汽受到阻挡被迫停留在盆地西部,形成了盆地西部异常的水汽辐合,东部异常的水汽辐散,由此导致四川盆地西涝东旱。反之,当西太平洋副热带高压偏南偏东时,其西南侧的南海水汽不能到达盆地西部,只能到达盆地东南部,而孟加拉湾及青藏高原水汽则可以进入盆地东部,在盆地东部形成异常的水汽辐合,在西部形成异常的水汽辐散,造成四川盆地西旱东涝。  相似文献   

18.
杨莲梅  张庆云 《高原气象》2007,26(3):435-441
利用1980—2004年NCEP/DOE新再分析月平均资料及我国225个测站1980—2004年月降水量资料,通过诊断分析,研究了南疆夏季降水异常的环流和高原地表潜热通量特征。结果表明:南疆夏季降水偏少年,南亚高压西部偏强,西风急流位置偏北,500 hPa中高纬环流经向度减弱,伊朗高压偏北、偏东,西太平洋副热带高压偏西、偏南;降水偏多年则相反。南疆夏季降水偏少年,高原北部和南疆地区为下沉的垂直环流距平,Ferrell环流增强;降水偏多年则相反。南疆夏季降水偏少年和偏多年的前期冬春季开始孟加拉湾、青藏高原和南疆地区地表潜热通量具有相反的变化,南疆夏季降水与高原北部地表潜热通量呈显著正相关,与南部地表潜热通量呈反相关关系。  相似文献   

19.
Due to the higher temporal and spatial resolution and the better integrality of long-term satellite infrared(IR) Brightness Temperature(TBB) data,a climatology of deep convection during summer over South China and the adjacent waters is presented in this paper based on the 1-hourly infrared IR TBB data during June-August of 1996-2007(except 2004).The results show that the geographic distribution of deep convection denoted by TBB ≤-52℃ over South China and the adjacent waters are basically consistent with previous statistical results based on surface thunderstorm observations and low-orbit satellite lightning observations.The monthly,ten-day,five-day and diurnal variations of deep convection in this region are focused on in this paper.There are 5 active deep-convection areas in June-August.The monthly variations of the deep convection are closely associated with the large-scale atmospheric circulations.The deep convection over the land areas of South China is more active in June while that over the South China Sea is more active in July and August.The development of deep convection is prominently intermittent and its period is about 3 to 5 five-day periods.However,the deep convection over the coastal areas in South China remains more active during summer and has no apparent intermittence.The ten-day and five-day variations of deep convection show that there are different variations of deep convection over different areas in South China and the adjacent waters.The tendency of deep convection over the land areas of South China is negatively correlated with that over the South China Sea.The diurnal variations of deep convection show that the sea-land breeze,caused by the thermal differences between land and sea,and the mountain-valley breeze,caused by the thermal differences between mountains and plains or basins,cause deep convection to propagate from sea to land in the afternoon and from land to sea after midnight,and the convection over mountains propagates from mountains to plains after midnight.The different diurnal variations of deep convection over different underlying surfaces show that not only there are general mountainous,marine and multi-peak deep convection,but also there is longer-duration deep convection over coastal areas and other deep convection triggered and maintained by larger-scale weather systems in South China during summer.  相似文献   

20.
基于1981-2015年中国逐日降水量加密观测资料和NCEP/NCAR再分析资料,采用主、客观相结合的方法,以天气过程为单元建立了中国95°E以东地区及其6个子区的区域性暴雨过程个例谱,进一步使用小波功率谱、9点二项式平滑及离差平方和聚类等方法剖析了中国95°E以东区域性暴雨过程的时、空分布统计特征。结果表明:(1)中国95°E以东区域性暴雨过程平均年总次数接近30次;其中,江淮流域是出现区域性暴雨过程最多的子区,平均为19次/a;其次为华南和西南地区东部,平均为10.5和5.8次/a;东北地区、华北和西北地区东部平均仅为1-3次/a。(2)中国95°E以东及各子区区域性暴雨过程次数的年及年代际变化主要表现为波动特征,各子区中江淮流域与中国95°E以东地区的年及年代际波动变化最为一致;华南与西南地区、东北地区与华北的波动变化互为显著的正相关。中国95°E以东及各子区区域性暴雨过程年总次数都表现出2-4 a的周期变化,此外,江淮流域、华南和西北地区东部还表现出6-10 a的周期变化,华北表现出13-17 a的周期变化。(3)中国95°E以东区域性暴雨过程总体呈夏季最多、冬季最少、春季多于秋季的分布特征,其中以7月出现次数最多。各子区中,江淮流域和西南地区东部区域性暴雨过程以6、7月最多,华南以5、6月最多;东北地区、华北、西北地区东部集中出现在7、8月。(4)中国95°E以东地区的极端区域性暴雨过程可划分为7种分布类型。第Ⅰ-Ⅳ型强降雨区从江南南部和华南呈阶梯状逐步北抬至黄淮和四川盆地东部一带,第Ⅴ-Ⅶ型除在东南沿海均有强降雨区外,第Ⅴ型在华南东部至江淮、第Ⅵ型在黄淮北部至东北地区中南部、第Ⅶ型在黄淮西部和华北中南部还分布有强降雨区。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号