首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors’ previous study identified the wave trains of intraseasonal oscillations, which are mainly in the band of 10–30 days, over the North Pacific during summer. The wave trains are zonally oriented and trapped along the upper-tropospheric westerly jet, and accordingly gain energy mainly through baroclinic energy conversion. In this study, the authors investigate the distinct features of the wave trains between early summer (1 June to 7 July) and late summer (8 July to 31 August), considering that the westerly jet experiences a remarkable subseasonal variation over the North Pacific during summer—that is, the jet is much stronger in early summer than late summer. The results indicate that the wave trains are stronger in early summer compared with late summer. Further analysis suggests that, in early summer, the wave trains can obtain energy more efficiently from the basic flow; or more exactly, stronger westerlies through baroclinic energy conversion.摘要我们之前的研究工作表明, 夏季北太平洋上空存在主导周期为10-30天的季节内波列, 波列纬向分布于上层西风急流带中, 并通过斜压能量转换从基本气流获取能量得到发展和维持. 由于西风急流在前夏(6月1日–7月7日)明显强于后夏(7月8日–8月31日), 因而, 在本研究中, 我们着重研究了波列在前, 后夏的不同特征. 研究结果表明, 波列强度在前夏明显强于后夏, 其原因在于波列在前夏能够通过斜压能量转换从更强的西风中获取更多的能量.  相似文献   

2.
The relationship between variations in the East Asian trough (EAT) intensity and spring extreme precipitation over Southwest China (SWC) during 1961–2020 is investigated. The results indicate that there is an interdecadal increase in the relationship between the EAT and spring extreme precipitation over eastern SWC around the late 1980s. During the latter period, the weak (strong) EAT corresponds to a strong and large-scale anomalous anticyclone (cyclone) over the East Asia–Northwest Pacific region. The EAT-related anomalous southerlies (northerlies) dominate eastern SWC, leading to significant upward (downward) motion and moisture convergence (divergence) over the region, providing favorable (unfavorable) dynamic and moisture conditions for extreme precipitation over eastern SWC. In contrast, during the former period, the EAT-related circulation anomalies are weak and cover a relatively smaller region, which cannot significantly affect the moisture and dynamic conditions over eastern SWC; therefore, the response in extreme precipitation over eastern SWC to EAT is weak over the period. The interdecadal change in the relationship between eastern SWC spring extreme precipitation and the EAT could be related to the interdecadal change in the EAT variability. The large (small) variability of the EAT is associated with significant (insignificant) changes in spring extreme precipitation over eastern SWC during the latter (former) period.摘要本文研究表明东亚大槽强度与中国西南地区东部春季极端降水的关系在20世纪80年代末后显著增强, 这可能与东亚大槽自身变率的年代际变化有关. 在80年代末之后, 东亚大槽的变率显著增强, 其对应的大气环流异常也偏强, 范围偏大, 可以显著影响西南地区东部的水汽和动力条件, 从而引起该地区春季极端降水的显著变化. 而在80年代末之前, 东亚大槽的变率偏弱, 其对应的大气环流异常也偏弱, 范围偏小, 因此不能对西南地区东部春季极端降水的变化产生显著影响.  相似文献   

3.
Northeast China (NEC) witnessed an interdecadal increase in summer extreme heat days (EHDs) around the mid-1990s. The current study reveals that this interdecadal increase only occurs in June and July, while August features a unique interdecadal decrease in EHDs around the early 1990s. Plausible reasons for the interdecadal decrease in EHDs in August are further investigated. Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature (Tmax). Overall, the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern, Silk Road pattern, and East Asia–Pacific pattern. However, the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases. The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC. Meanwhile, the convection over the western North Pacific, which accompanies the East Asia–Pacific pattern, presents a significant decrease in variance after the early 1990s, further decreasing the Tmax variability over NEC.摘要东北夏季极端高温频次在1990年代中期出现年代际增多.本文指出该年代际增多只出现在6–7月, 而8月则呈现特殊性, 即在1990年代初出现年代际减少.进一步分析表明, 东北8月极端高温频次的年代际减少由日最高温度变率的年代际减小造成.东北日最高温度受到欧亚遥相关,丝绸之路遥相关和东亚-太平洋遥相关的共同调制.1990年代初之后, 西风急流上的经向风变率显著减小, 丝绸之路遥相关对下游的影响减弱, 导致东北日最高温度变率减小.同时, 西北太平洋热带对流的变率也在1990年代初出现年代际减小, 通过东亚-太平洋遥相关使东北日最高温度变率进一步减小.  相似文献   

4.
Land–atmosphere interaction, as one of the key processes affecting the atmosphere and climate over East Asia, has drawn increasing attention during the past few decades. However, the current level of understanding regarding the mechanisms through which land surface processes impact the East Asian climate needs to be improved. Based on existing studies, six key regions where land surface processes affect the East Asian climate are proposed in this study, which can provide a valuable reference for future research into land–atmosphere interaction in East Asia.摘要陆气相互作用是影响东亚大气环流和气候的一个关键过程, 受到了越来越多的关注. 然而, 关于陆面过程影响东亚气候的相关机理的理解还有待提升. 在已有研究基础上, 提出了陆面过程影响东亚气候研究值得关注的青藏高原, 欧亚中高纬地区, 中国东部季风区, 中南半岛, 中亚中纬度区域, 西亚等6个关键区, 期待为加强陆面过程与东亚气候研究提供一定参考.  相似文献   

5.
Since the 2000s, extratropical extremes have been more frequent, which are closely related to anomalies of planetary-scale and synoptic-scale systems. This study focuses on a key synoptic system, the extratropical cyclonic vortex (ECV) over land, to investigate its relations with extreme precipitation. It was found that ECVs have been more active post-2000, which has induced more extreme precipitation, and such variation is projected to persist along with increasing temperature within 1.5°C of global warming. An enhanced quasi-stationary vortex (QSV) primarily contributes to the ECV, rather than inactive synoptic-scale transient eddies (STEs). Inactive STEs respond to a decline in baroclinicity due to the tendency of the homogeneous temperature gradient. However, such conditions are helpful to widening the westerly jet belt, favoring strong dynamic processes of quasi-resonant amplification and interaction of STEs with the quasi-stationary wave, and the result favors an increasing frequency and persistence of QSVs, contributing to extreme precipitation.摘要自21世纪以来, 热带外极端降水频次增加. 随着中高纬度的显著增温, 经向温度梯度减弱导致低层大气斜压性减小, 由此产生的气旋型瞬变涡天气系统等活动减弱. 然而, 热力分布导致西风急流带变宽, 经向环流加大, 有助于行星尺度波动相关的涡旋异常增加, 如东北冷涡, 中亚涡, 东欧-地中海涡, 北美涡等, 进而增加了气旋涡影响范围的极端降水频次. 在未来变暖背景和1.5°C增温的目标内, 热带外气旋涡增强会进一步促进极端降水发生.  相似文献   

6.
Spatially and temporally accurate event detection is a precondition for exploring the mechanisms of climate extremes. To achieve this, a classical unsupervised machine learning method, the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering algorithm, was employed in the present study. Furthermore, the authors developed a 3D (longitude–latitude–time) DBSCAN-based workflow for event detection of targeted climate extremes and associated analysis of parameter sensitivity. The authors applied this 3D DBSCAN-based workflow in the detection of the 2022 summertime Yangtze extreme heatwave and drought based on the ERA5 reanalysis dataset. The heatwave and drought were found to have different development and migration patterns. Synoptic-scale heatwave extremes appeared over the northern Pacific Ocean at the end of June, extended southwestwards, and covered almost the entire Yangtze River Basin in mid-August. By contrast, a seasonal-scale drought occurred in mid-July over the continental area adjacent to the Bay of Bengal, moved northeastwards, and occupied the entire Yangtze River Basin in mid-September. Event detection can provide new insight into climate mechanisms while considering patterns of occurrence, development, and migration. In addition, the authors also performed a detailed parameter sensitivity analysis for better understanding of the algorithm application and result uncertainties.摘要极端气候事件的精准识别是机理分析的重要前提. 本研究借助无监督机器学习中经典的DBSCAN密度聚类算法, 发展了在三维 (经度-纬度-时间) 空间内进行目标事件识别和参数敏感性分析的研究方案. 在2022年长江全域高温伏秋旱事件识别中的应用表明, 本次天气尺度极端热浪和季节尺度重旱事件的产生发展, 空间传播模式不同. 天气尺度热浪信号自6月底从北太平洋向西南方向延伸, 直至8月中旬覆盖长江全域; 季节重旱信号于7月中旬从孟加拉湾陆面区域向东北向延伸, 直至9月中旬覆盖长江全域. 同时, 本研究中亦进行了相关参数敏感性的详细分析, 对算法应用, 结果理解亦有帮助.  相似文献   

7.
Previous studies have demonstrated that the western Pacific subtropical high (WPSH) has experienced an eastward retreat since the late 1970s. In this study, the authors propose that this eastward retreat of the WPSH can be partly attributed to atmospheric responses to the positive phase of the Pacific decadal oscillation (PDO), based on idealized SST forcing experiments using the Community Atmosphere Model, version 4. Associated with the positive phase of the PDO, convective heating from the Indian Peninsula to the western Pacific and over the eastern tropical Pacific has increased, which has subsequently forced a Gill-type response to modulate the WPSH. The resulting cyclonic gyre over the Asian continent and the western Pacific in the lower troposphere is favorable for the eastward retreat of the WPSH. Additionally, the resulting anticyclonic gyre in the upper troposphere is favorable for the strengthening and southward expansion of the East Asian westerly jet, which can modulate the jet-related secondary meridional–vertical circulation over the western Pacific and promote the eastward retreat of the WPSH.摘要以往的研究已证实, 西太平洋副热带高压 (副高) 在1970s后期减弱东退.基于大气模式 (CAM4) 的理想型海温强迫试验, 结果表明:副高的东退可能是大气对于正位相太平洋年代际振荡 (PDO) 的相应.伴随着PDO转变为正位相, 西太平洋至印度半岛以及热带东太平洋的对流加热增强, 大气表现为Gill型响应, 在亚洲大陆至西太平洋上空低层产生气旋性异常, 有利于副高东退.同时, 高层产生反气旋异常, 使得东亚西风急流加强和向南扩展, 进而调节西太平洋上空的次级环流, 进一步有利于副高东退.  相似文献   

8.
Previous studies have indicated that the stratospheric quasi-biennial oscillation (QBO) has a global impact on winter weather, but relatively less attention has been paid to its effect in summer. Using ERA5 data, this study reports that the QBO has a significant impact on the tropospheric circulation and surface air temperature (SAT) in the extratropics in Northeast Asia and the North Pacific in early summer. Specifically, a QBO-induced mean meridional circulation prevails from Northeast Asia to the North Pacific in the westerly QBO years, exhibiting westerly anomalies in 20°–35°N and easterly anomalies in 35°–65°N from the lower stratosphere to troposphere. This meridional pattern of zonal wind anomalies can excite positive vorticity and thus lead to anomalous low pressure and cyclonic circulation from Northeast Asia to the North Pacific, which in turn cause northerly wind anomalies and decreased SAT in Northeast Asia in June. Conversely, in the easterly QBO years, the QBO-related circulation and SAT anomalies are generally in an opposite polarity to those in the westerly QBO years. These findings provide new evidence of the impact of the QBO on the extratropical climate, and may benefit the prediction of SAT in Northeast Asia in early summer.摘要本文研究了平流层准两年振荡 (QBO) 对东北亚-北太平洋地区初夏对流层环流和地表气温的影响. 在QBO西风位相年, 东北亚至北太平洋地区存在一支由QBO引发的平均经向环流异常, 该经向环流异常可在东北亚至北太平洋地区激发正涡度, 并形成异常气旋式环流. 气旋左侧出现的异常偏北风导致6月东北亚地表气温下降. QBO东风位相年的结果与西风位相年大致相反. 这些结果为QBO对热带外地区天气,气候的影响提供了新的证据, 并为东北亚初夏地表气温的预测提供了新的线索.  相似文献   

9.
China has been frequently suffering from haze pollution in the past several decades. As one of the most emission-intensive regions, the North China Plain (NCP) features severe haze pollution with multiscale variations. Using more than 30 years of visibility measurements and PM2.5 observations, a subseasonal seesaw phenomenon of haze in autumn and early winter over the NCP is revealed in this study. It is found that when September and October are less (more) polluted than the climatology, haze tends to be enhanced (reduced) in November and December. The abrupt turn of anomalous haze is found to be associated with the circulation reversal of regional and large-scale atmospheric circulations. Months with poor air quality exhibit higher relative humidity, lower boundary layer height, lower near-surface wind speed, and southerly anomalies of low-level winds, which are all unfavorable for the vertical and horizontal dispersion and transport of air pollutants, thus leading to enhanced haze pollution over the NCP region on the subseasonal scale. Further exploration indicates that the reversal of circulation patterns is closely connected to the propagation of midlatitude wave trains active on the subseasonal time scale, which is plausibly associated with the East Atlantic/West Russia teleconnection synchronizing with the transition of the North Atlantic SST. The seesaw relation discussed in this paper provides greater insight into the prediction of the multiscale variability of haze, as well as the possibility of efficient short-term mitigation of haze to meet annual air quality targets in North China.摘要中国近几十年来频受雾霾污染问题困扰, 其中华北平原作为排放最密集的区域之一, 常遭遇不同尺度的严重雾霾污染. 本文利用30余年的能见度和颗粒物 (PM2.5) 观测数据, 发现了华北平原地区在秋季和早冬时雾霾污染在次季节尺度上“跷跷板式”反向变化的关系. 研究发现, 当9–10月污染较轻 (重) 时, 11–12月的污染倾向于加重 (减轻) . 这种突然的变化与局地和大尺度环流的反向变化有关. 污染较重的月份常伴随有更高的相对湿度, 更低的边界层高度和近地面风速以及低层的南风异常, 均不利于污染的垂直和水平扩散和传输, 从而导致了次季节尺度上霾污染的加重. 进一步的研究发现环流场的突然转向与在次季节尺度上活跃的中纬度波列的传播密切相关, 而此波列可能主要与大西洋海温转变及引起的EA/WR遥相关型有关. 这一次季节反向变化为霾污染多尺度变率预测提供了新的理解, 同时为华北地区年度空气质量达标的短期目标提供了具有可行性的参考方法.  相似文献   

10.
To better understand the relationship between anticyclones in Siberia and cold-air activities and temperature changes in East Asia, this study proposes a 2D anticyclone identification method based on a deep-learning model, Mask R-CNN, which can reliably detect the changes in the morphological characteristics of anticyclones. Using the new method, the authors identified the southeastward-extending Siberian cold high (SEESCH), which greatly affects wintertime temperatures in China. This type of cold high is one of the main synoptic systems (45.7%) emerging from Siberia in winter. Cold air carried by SEESCH has a significant negative correlation with the temperature changes in the downstream area, and 52% of SEESCHs are accompanied by cold-air accumulation in North and East China, which has a significant impact on regional cooling. These results provide clues for studying the interconnection between SEESCHs and extreme cold events.摘要为了更好地研究西伯利亚地区反气旋与冷空气活动,东亚地区气温变化之间的关联, 本文提出一种基于Mask R-CNN的反气旋识别方法, 能够较为准确地刻画反气旋形态特征变化. 使用该方法能够识别对中国冬季气温具有较大影响的东南延伸型西伯利亚冷高压(SEESCH), 这种冷高压是冬季出现在西伯利亚地区的主要天气系统之一(45.7%). SEESCH携带的冷空气与下游地区温度变化呈显著负相关, 52%的SEESCH伴随着华北华东地区冷空气聚集, 对区域降温有显著影响. 这些结果为研究 SEESCH 与极端寒冷事件之间的联系提供线索.  相似文献   

11.
With its rapid rise in temperatures and accelerated urbanization in recent decades, eastern China may be affected by both global warming and the urban heat island effect. To investigate the influence of anthropogenic forcing and urbanization on extreme temperature, the authors conducted detection and attribution analyses on 16 extreme indices using extended observational data during 1958–2020 and the models that participated in CMIP5 and CMIP6. The extended observational data till 2020 show continued warming in extreme temperatures in recent years. Most of the indices display an increase in warm extremes and decrease in cold extremes. Both CMIP5 and CMIP6 models are able to reflect these warming features, albeit the models can over- or underestimate some extreme indices. The two-signal detection with anthropogenic and urbanization effects jointly considered showed that the anthropogenic and urban signals can be simultaneously detected and separated only in two frequency indices, i.e., the frequency of warm and cold nights. The anthropogenic forcing explains about two-thirds of the warming, while URB contributes about one-third for these two indices. For most of the other indices, only the anthropogenic signal can be detected. This indicates that the urban signal is distinct from the natural variability mainly for the nighttime frequency indices but not for the other extreme temperature indies. Given the important influence of nighttime extremes on human health, this suggests an urgent need for cities to adapt to both global warming and urbanization.摘要作为中国经济最发达的地区, 中国东部受到城市热岛效应和温室气体排放等人类活动的明显影响. 本文利用最新的观测和全球气候模式资料, 对极端温度强度, 频率和持续时间等16个极端温度指数进行了检测归因分析, 研究了人为强迫和城市化效应对中国东部极端温度变化的影响. 结果表明, 近年来极端温度持续增暖, 极端暖事件增加, 极端冷事件减少. 新一代全球气候模式能够合理地反映这些变暖特征, 但是部分模式可能高估或低估了观测到的变化. 基于最优指纹方法的双信号检测表明, 人为信号和城市化效应只能在暖夜和冷夜两个频率指标上同时被检测并分离, 其变化约三分之二可归因于人类活动, 剩余的三分之一可归因于城市化效应. 而在极端温度其他指数的变化中, 只有人类活动的影响能够被检测到.  相似文献   

12.
This study aims to quantify the response of a westerly-trough rainfall episode that occurred in summer 2020 to multi-scale topographic control in southwestern China, based on observations and numerical simulations. The multi-scale topography is composed of the Tibetan Plateau, Hengduan Cordillera (HC), and Sichuan Basin (SB). The westerly trough was characterized by southeastward deepening together with an in-phase propagating rainfall episode. By utilizing the results of numerical experiments, how the multi-scale topography impacted this westerly trough rainfall episode is explored. It is found that HC was the pivotal topographic factor affecting the southeastward extension of the trough and related rainfall, while SB accerelated the eastward movement of the westerly trough and changed the tilting direction of the trough line, thus further changing the location and orientation of precipitation. For extreme rainfall with intensity exceeding 10 mm h?1, a roughly threefold rise in the cover ratio (from 1.8% to 7.2%) and fourfold increase in the areal rainfall amount per hour occurred by removing the HC barrier, due to the strongest vorticity and long-distance transport capacity to potential vorticy mass accompanying the southeast-stretching trough. Our results quantitatively reveal a strong response of westerly trough rainfall to multi-scale topographic control in southwestern China, therefore serving as an important reference for future decision making and effective model improvement.摘要中国西南部地形复杂, 降水频发, 地形对降水的影响至关重要. 本文基于观测和数值模拟, 定量揭示了青藏高原, 横断山脉和四川盆地多尺度地形对该地区西风槽降水的影响. 发现横断山脉是影响槽东南伸展, 降水传播的关键地形要素, 而四川盆地可加速西风槽东移, 改变槽线倾斜方向, 进而改变降水的位置和方向. 对于极端降水事件, 移除横断山脉屏障后, 降水覆盖率约增加3倍 (从1.8%增至7.2%), 小时面雨量增强4倍. 这些研究, 可为地形复杂地区降水的未来预报决策和有效模式改进提供参考.  相似文献   

13.
This report is a summary of China's climate, as well as major weather and climate events, during 2021. In 2021, the mean temperature in China was 10.5°C, which was 1.0°C above normal (1981–2010 average) and broke the highest record since 1951. The annual rainfall in China was 672.1 mm, which was 6.7% above normal. Also, the annual rainfall in northern China was 40.2% above normal, which ranked second highest since 1961. The rainstorm intensity in the rainy season was strong and featured significant extremes, and disasters caused by rainstorms and flooding were more serious than the average in the past decade. In particular, the extremely strong rainstorm in Henan during July and autumn caused flooding in the middle and lower reaches of the Yellow River with severe consequences. Heatwaves occurred more frequently than normal, and their durations in southern China were longer than normal in summer and autumn. Phased drought was obvious, and caused serious impacts in South China. The number of generated and landfalling typhoons was lower than normal; however, Typhoon In-fa broke the record for the longest overland duration, held since 1949, and affected a wide area. Severe convective weather and extreme windy weather occurred frequently, causing serious impacts. The number of cold waves was more than normal, which caused wide-ranging extremely low temperatures in many places. Sandstorms appeared earlier than normal in 2021, and the number of strong dust storm processes was more than normal.摘要2021年, 中国气候暖湿特征明显, 全国平均气温10.5℃, 较常年偏高1.0℃, 创下了1951年以来最高纪录; 全国平均降水量672.1毫米, 比常年偏多6.7%, 其中北方地区平均降水量较常年偏多40.2%, 为1961年以来第二多. 汛期暴雨过程强度大, 极端性显著, 河南特大暴雨灾害影响重, 黄河中下游流域秋汛明显; 高温过程多, 夏秋南方高温持续时间长; 区域性, 阶段性气象干旱明显, 华南干旱影响较重; 台风生成和登陆均偏少, “烟花”陆地滞留时间长, 影响范围广; 强对流天气强发, 极端大风频发, 局地致灾重; 寒潮过程多, 强度大, 极端低温频现; 沙尘天气出现早, 强沙尘暴过程多.  相似文献   

14.
Observational data from satellite altimetry were used to quantify the performance of CMIP6 models in simulating the climatological mean and interannual variance of the dynamic sea level (DSL) over 40°S–40°N. In terms of the mean state, the models generally agree well with observations, and high consistency is apparent across different models. The largest bias and model discrepancy is located in the subtropical North Atlantic. As for simulation of the interannual variance, good agreement can be seen across different models, yet the models present a relatively low agreement with observations. The simulations show much weaker variance than observed, and bias is apparent over the subtropics in association with strong western boundary currents. This nearshore bias is reduced considerably in HighResMIP models. The underestimation of DSL interannual variance is at least partially due to the misrepresentation of ocean processes in the CMIP6 historical simulation with its relatively low resolution. The results identify directions for future model development towards a better understanding of the mean and interannual variability of DSL.摘要本研究采用卫星测高数据与第六次国际耦合模式比较计划 (CMIP6) 海平面动力进行对比, 重点针对40°S–40°N地区的动力海平面 (DSL) , 评估了模式对其平均态与年际变率的综合模拟能力. 结果表明, 对于DSL平均态的模拟, 模式与观测结果非常吻合, 模式之间的差异较小. 其中, 副热带北大西洋是模拟偏差和模式间差异较为显著的区域. 对于DSL年际变率的模拟, 模式之间保持较高的一致性, 但是, 模式与观测结果存在明显差异, 模式普遍低估了DSL的年际方差; 其中, 误差大值区域出现在副热带西边界流附近. 模式分辨率会影响CMIP6对中小尺度海洋过程的重现能力, 这可能是导致CMIP6历史模拟出现误差的原因之一.  相似文献   

15.
2019 was one of the hottest years in recent decades, with widespread heatwaves over many parts of the world, including Africa. However, as a developing and vulnerable region, the understanding of recent heatwave events in Africa is limited. Here, the authors incorporated different climate datasets, satellite observations, and population estimates to investigate patterns and hotspots of major heatwave events over Africa in 2019. Overall, 2019 was one of the years that experienced the strongest heatwaves in terms of intensity and duration since 1981 in Africa. Heatwave hotspots were clearly identified across western-coastal, northeastern, southern, and equatorial Africa, where major cities and human populations are located. The proportion of urban agglomerations (population) exposed to extreme (99th percentile) heatwaves in the Northern Hemisphere and Southern Hemisphere rose from 4% (5 million people) and 15% (17 million people), respectively, in the baseline period of 1981–2010 to 36% (43 million people) and 57% (53 million people), respectively, in 2019. Heatwave patterns and hotspots in 2019 were related to anomalous seasonal change in atmospheric circulation and above-normal sea surface temperature. Without adaptation to minimize susceptibility to the effects of heatwave events, the risks they pose in populated areas may increase rapidly in Africa.摘要2019 年是近几十年来最热的年份之一, 包括非洲在内的全球许多地区都受到大范围的热浪侵袭. 然而, 非洲作为脆弱的发展中地区, 我们对其近年热浪事件的了解非常有限. 本研究中, 我们结合了不同的气候数据集, 卫星观测资料和人口数据, 研究了 2019 年非洲地区主要热浪事件发生的时空特征和热点分布区. 总体而言, 2019 年是非洲地区自 1981 年以来热浪强度最强, 持续时间最久的年份之一. 在主要城市和人口所在的非洲西海岸, 东北部, 南部和赤道地区是热浪发生的热点区. 位于赤道以北的非洲地区, 暴露于极端 (第 99 个百分位) 热浪的城市人口比例从 1981–2010 年基准期的 4% (500 万人) 上升至2019 年的 36% (4300 万人). 位于赤道以南地区, 暴露于极端热浪的城市人口则从基准期的15% (1700 万人) 上升至57% (5300 万人). 2019 年的热浪时空特征和热点分布与大气环流的季节变化异常和海温的暖异常有关. 如果不及时采取适应措施以尽量减少人口对热浪事件影响的敏感性, 热浪对非洲人口稠密地区构成的风险可能会迅速增加.  相似文献   

16.
Southeast China has comparable stratus cloud to that over the oceans, especially in the cold seasons (winter and spring), and this cloud has a substantial impact on energy and hydrological cycles. However, uncertainties remain across datasets and simulation results about the long-term trend in low-cloud cover in Southeast China, making it difficult to understand climate change and related physical processes. In this study, multiple datasets and numerical simulations were applied to show that low-cloud cover in Southeast China has gone through two stages since 1980—specifically, a decline and then a rise, with the turning point around 2008. The regional moisture transport plays a crucial role in low-cloud cover changes in the cold seasons and is mainly affected by the Hadley Cell in winter and the Walker Circulation in spring, respectively. The moisture transport was not well simulated in CMIP6 climate models, leading to poor simulation of the low-cloud cover trend in these models. This study provides insights into further understanding the regional climate changes in Southeast China.摘要中国东南地区在冬春冷季节盛行低云, 对局地能量平衡和水文循环有重要的作用. 本研究使用多套数据和数值模拟结果, 分析这一地区冷季节内低云云量在1980年至2017年的长期变化. 结果表明, 低云云量经历了先下降后上升的趋势变化, 转折点出现在2008年左右. 局地水汽通量输送在影响低云云量的变化中起着至关重要的作用, 其在冬季和春季分别受到哈德莱环流和沃克环流的影响. CMIP6中的气候模式对水汽通量输送的模拟能力欠佳, 影响了对低云云量的模拟结果.  相似文献   

17.
In early-to-mid November 2021, a pronounced reversal of surface air temperature (SAT) anomalies (SATAs) occurred over East Asia and Central Siberia, with extreme SATAs that reached up to about 10 °C. Such a synoptic-scale reversal of SATAs was characterized by the alternate emergence of the “colder Central Siberia–warmer East Asia” pattern and the “warmer Central Siberia–colder East Asia” pattern in November 2021. Coinciding with the reversals of the meridional dipole SATAs, large-scale atmospheric circulation anomalies experienced reversed changes. The development of the anomalous cyclonic (anticyclonic) flow over East Aisa (Central Siberia) was crucial for the occurrence of the “warmer Central Siberia–colder East Asia” pattern. Moreover, as the leading mode of daily SAT variability in approximately 56% of the Novembers during 1979–2021, the meridional dipole pattern of warmer (colder) anomalies over Central Siberia and colder (warmer) anomalies over East Asia may be one of the dominant modes of November SAT variability over Eurasia on the synoptic scale.摘要2021年11月, 东亚与中西伯利亚经历了相反的冷暖异常转换, 表现为“中西伯利亚偏冷, 东亚偏暖”与“中西伯利亚偏暖, 东亚偏冷”的交替出现. 该偶极型气温异常的天气尺度反转伴随着大尺度大气环流异常的反转. 进一步分析表明, 东亚与中西伯利亚的偶极型气温异常反转是1979–2021年期间11月欧亚气温日变化的主导模态之一(发生概率超过56%).  相似文献   

18.
Previous studies show that temporal irreversibility (TI), as an important indicator of the nonlinearity of time series, is almost uniformly overestimated in the daily air temperature anomaly series over China in NCEP reanalysis data, as compared with station observations. Apart from this highly overestimated TI in the NCEP reanalysis, some other important atmospheric metrics, such as predictability and extreme events, might also be overestimated since there are close relations between nonlinearity and predictability/extreme events. In this study, these issues are fully addressed, i.e., intrinsic predictability, prediction skill, and the number of extreme events. The results show that intrinsic predictability, prediction skill, and the occurrence number of extreme events are also almost uniformly overestimated in the NCEP reanalysis daily minimum and maximum air temperature anomaly series over China. Furthermore, these overestimations of intrinsic predictability, prediction skill, and the number of extreme events are only weakly correlated with the overestimated TI, which indicates that the quality of the NCEP reanalysis should be carefully considered when conclusions on both predictability and extreme events are derived.摘要作为时间序列非线性的一个重要指标, 从NCEP再分析得到日气温异常的时间不可逆性 (TI) 与观测站的相比几乎一致地被高估了.因为非线性与可预报性/极端事件之间有着密切的关系, 除了高估的TI外, 这些大气测度也可能被高估.本文结果表明:NCEP再分析的日最低和最高气温异常序列的内在可预报性,预报技巧和极端事件发生次数也几乎一致被高估.而且, 这些高估的测度与高估的TI只存在微弱的相关性, 这表明利用NCEP再分析研究可预测性和极端事件时, 需要仔细考虑其质量对结论的可能影响.  相似文献   

19.
This study investigates whether and how the Madden–Julian Oscillation (MJO) influences persistent extreme cold events (PECEs), a major type of natural disaster in boreal winter, over Northeast China. Significantly increased occurrence probabilities of PECEs over Northeast China are observed in phases 3 and 5 of the MJO, when MJO-related convection is located over the eastern Indian Ocean and the western Pacific, respectively. Using the temperature tendency equation, it is found that the physical processes resulting in the cooling effects required for the occurrence of PECEs are distinct in the two phases of the MJO when MJO-related convection is consistently located over the warm pool area. The PECEs in phase 3 of the MJO mainly occur as a result of adiabatic cooling associated with ascending motion of the low-pressure anomaly over Northeast Asia. The cooling effect associated with phase 5 is stronger and longer than that in phase 3. The PECEs associated with phase 5 of the MJO are linked with the northwesterly cold advection of a cyclonic anomaly, which is part of the subtropical Rossby wave train induced by MJO-related convection in the tropical western Pacific.摘要 本文利用高分辨率气温数据和热带季节内振荡 (MJO) 实时指数, 研究了1979–2015年冬季MJO活动对中国东北持续性极端低温事件 (PECE) 的影响特征和机理.结果表明:当MJO对流分别位于暖池地区的东印度洋 (位相3) 和西太平洋 (位相5) 时, 中国东北PECE的发生频率显著增加.利用温度方程诊断分析发现MJO两个位相所导致的冷却过程不同: 当 MJO处于位相3时, 中国东北地区为低压异常, 上升运动引起绝热冷却作用; 而位相5所形成的气旋性环流为中国东北地区带来西北风冷平流, 降温过程更强且持续更长时间.  相似文献   

20.
China has been frequently affected by severe snowstorms in recent years that have particularly large economic and human impacts. It is thus of great importance to increase our understanding of the underlying mechanisms of and future changes in snowfall occurrences over China. In this study, the effects of anthropogenic influences on snowfall and the associated future changes are explored using new simulations from CMIP6 (phase 6 of the Coupled Model Intercomparison Project) models. Observational evidence reveals a decrease in the annual total snowfall days and an increase in intense snowfall days over the snowfall-dominated regions in China during recent decades. Fingerprints of anthropogenic influences on these changes are detectable, especially the impacts of increased greenhouse gas emissions. During the winter seasons, low temperatures still cover the regions of northern China, and the associated precipitation days show an increase due to anthropogenic warming, which substantially benefits the occurrence of snowfall over these regions, particularly for intense snowfall events. This is also true in the future, despite rapid warming being projected. By the end of this century, approximately 23% of grids centered over northern China are projected to still experience an increase in daily intense snowfall events in winters. Additionally, the length of the snowfall season is projected to narrow by nearly 41 days compared to the current climate. Thus, in the future, regions of China, especially northern China, are likely to experience more intense snowfall days over a more concentrated period of time during the winter seasons.摘要近年来, 中国部分地区频繁遭遇极端降雪事件袭击, 造成巨大经济损失和人员伤亡. 因此, 亟需深入理解中国地区极端降雪变化的物理机制及其未来演变趋势, 为国家防灾减灾及气候变化应对措施制定提供科学依据. 本文基于CMIP6模式结果, 深入开展人类活动对中国地区降雪变化的影响及其未来演变趋势预估研究. 观测显示, 过去几十年在中国降雪频发区, 其年降雪日数呈现减少趋势但强降雪日数增加; 在这些变化中能够检测到人类活动的痕迹, 尤其是温室气体排放的影响. 对于冬季, 全球变暖背景下中国北方地区降水日数明显增加, 但北方地区仍为低温控制, 这有利于降雪尤其是强降雪事件的发生; 到了本世纪末, 中国仍有约23%的区域 (主要集中在北方地区) 其冬季强降雪日数呈现增加趋势. 此外, 中国地区降雪季长度相比当前气候减少了约41天. 因此, 在未来持续变暖背景下, 中国北方部分地区冬季将经历更多更为集中的强降雪事件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号