首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
天津市夏季降水日变化特征   总被引:3,自引:0,他引:3       下载免费PDF全文
利用1954-2007年天津市夏季逐时自记降水资料,分析了天津市夏季降水(包括逐小时降水量、降水频次、降水强度以及不同持续时间降水)日变化规律。结果表明:天津市一日内不同时次的多年累积降水量具有显著的日变化特征,呈明显的双峰型,高值分别出现在午后17时和午夜02时。逐小时降水强度与降水量的变化特征非常一致,而多年累积降水频次在凌晨02时至08时较高,之后至11时逐步降低,11时至24时变化不大。降水量与降水频次及降水强度的关系均达到显著性水平(P < 0.001),但逐小时降水强度与降水量相关性明显高于降水频次,表明降水量变化与降水强度有直接的关系,而降水频次对累积降水量的贡献占较小的权重。持续不同时间降水事件的发生次数在一日内的变化特征明显不同,长时性降水峰值集中在清晨,而短时性降水尤其是1-3 h降水主要以午后为主。  相似文献   

2.
利用2008—2014年逐小时空间分辨率为0.1°的全国自动站观测降水资料和CMORPH卫星反演降水融合资料,研究了青藏高原(下称高原)夏季降水日变化特征,并探讨了不同持续时间和等级降水对降水量日变化的影响。结果表明,整个高原地区夏季降水量和降水频率的日变化表现出明显的凌晨和傍晚的双峰结构,而降水强度的双峰结构却不太明显。进一步对各分区降水日变化特征的分析发现,高原中西部降水日变化特征与整个高原地区的一致,而高原北部(东部)地区降水量和频率的日峰值出现在傍晚(午夜-凌晨)。降水持续时间对降水量日变化有显著的影响,高原夏季降水量日变化的双峰特征是由短时(1~3 h)和长持续性(6 h以上)降水共同作用造成的,午夜-凌晨(傍晚)的降水日峰值主要是由于长持续性(短时)降水所引起。分析不同等级降水量日变化特征发现,高原北部地区小-大雨(暴雨)的降水量日峰值基本出现在下午(午夜),而高原中西部不同等级降水量的日变化基本都呈现出傍晚和午夜-凌晨的双峰结构,高原东部地区不同等级降水量的日变化形式较一致,日峰值出现在午夜-凌晨。  相似文献   

3.
彭莉莉  邓剑波  谢傲 《湖北气象》2020,39(2):201-206
利用南岳山南坡不同海拔高度上的3个气象观测站2015年9月1日-2018年8月31日逐时降水资料,分析了南岳山降水日演变特征。结果表明:从山底到山顶总降水量逐渐增加,存在3个降水峰值时段,分别在清晨、午后和傍晚,清晨雨量峰值主要由该时段降水频次较高所致,午后与傍晚雨量峰值主要与该时段降水强度较大有关,山顶高山站与山底站降水量差异主要体现在午后与傍晚时段;小时最大降水量主要出现在午后至傍晚,山底站短时强降水出现时段较分散,山腰和山顶高山站短时强降水主要集中在午后至傍晚时段;持续时间小于等于6 h的短持续降水频次多于持续时间大于6 h长持续降水频次,其主要出现在午后至傍晚,长持续降水过程多出现在凌晨至中午,其对总降水量的贡献大于短持续降水。  相似文献   

4.
利用海东区域自动气象站2007—2016年逐小时降水数据,分析比较河湟流域~*5—9月份降水量、降水频次和降水强度的日变化峰值位相的整体特征、空间分布差异和典型区域平均的日变化演变特征。得出,河湟流域降水日变化峰值时间主要是傍晚到夜间和清晨双峰型位相和午夜单峰型位相,就整体而言,降水强度的下午峰值特征更加突出,降水频次以午夜峰值为主。综合考虑降水量和降水强度降水频次的日变化峰值位相发,发现河湟流域降水日变化峰值位相在空间分布上存在南北差异,北部双峰型位相和南部单峰型位相特征;从降水量、频次、强度的日变化演变特征来看,北部地区双峰型位相特征,降水量以傍晚至夜间峰值为主清晨峰值为次,降水量位相与降水频次位同步相滞后于降水强度位相;南部地区是单峰型位相特征,降水量峰值出现在午夜,低谷出现在中午,降水量位相与降水频次位相同步滞后于降水强度位相,这应是降水演变过程中时间演变不对称性和高原对流云系发展演变的具体表现。  相似文献   

5.
利用1994—2013年5—9月喀什气象站逐小时降水资料,分析喀什近20 a降水的日变化特征。研究表明,20时至翌日06时为降水量的高值阶段,最大值出现在01时,07—19时为降水量的低值时段,最小值出现在16时。降水频次的高值区为00时至07时,降水最不易产生的时间为17时。降水强度最高值在20时,次高值为01时,也是累积降水量较大时刻,降水强度最低值出现在15时也是累积降水量的低值区。喀什的降水主要以短时性降水(1~3 h)为主,多发生在傍晚至夜间,1 h降水频次最多的是量级≤1 mm的降水,但1.1 mm≤R1≤3.0 mm量级的降水贡献率最高。小雨、中雨及大雨降水过程最易发生时段均为前半夜,下午为各量级降水过程发生最少的时段。  相似文献   

6.
利用1971—2010年汛期河南省111个观测站的逐小时降水资料,分析了河南省汛期降水的日变化特征。结果表明:河南省汛期降水量和降水频率日峰值均从南向北递减;黄河流域降水量日峰值明显小于淮河流域,南阳盆地的降水量日峰值大多出现在凌晨,豫西山地大多出现在傍晚,豫南大部分地区则出现在下午;豫南地区的降水频率日峰值最大,南阳盆地和豫西山地次之,全省大部分地区降水频率日峰值出现时间集中在上午;降水量、降水频率和降水强度的日变化呈双峰值特征,均在凌晨和傍晚出现峰值,凌晨的峰值最大;长持续性降水对河南省汛期降水量的贡献大于短时降水。  相似文献   

7.
湖南夏季降水日变化特征   总被引:12,自引:2,他引:10       下载免费PDF全文
戴泽军  宇如聪  陈昊明 《高原气象》2009,28(6):1463-1470
利用湖南96个测站13年的逐时自记降水资料, 分析了夏季(6~8月)降水日变化特征。结果表明, 湖南夏季降水日变化呈现显著的区域差异。湘东南降水量、 降水频次峰值主要出现在午后到傍晚, 而其它地区的降水峰值一般出现在清晨。进一步分析显示, 降水频次峰值出现时次分布更集中, 区域特征更鲜明。湘西北、 湘东南区域平均的累积降水量、 降水频次及降水强度的日变化在清晨和午后均呈双峰型特征。湘西北主(次)峰值出现的时间大致与湘东南次(主)峰值出现的时间对应。同时, 降水日变化与降水持续时间密切相关。持续5~10 h降水事件是持续1~4 h事件与持续10 h以上事件降水量峰值出现时间发生显著变化的过渡降水事件。持续1~4 h(10 h以上)的降水事件的极值降水始发时间为午后至傍晚(夜间)。在不同持续时间的降水事件中, 持续2 h降水的累积量最大。  相似文献   

8.
中国大陆日降水峰值时间位相的区域特征分析   总被引:5,自引:0,他引:5       下载免费PDF全文
利用高密度的中国国家级地面气象站逐时降水数据,系统分析和比较了中国大陆地区暖季降水量、降水频次和降水强度的日变化峰值位相的整体特征、空间分布差异及典型区域平均的日变化演变特征。研究指出,中国大陆暖季降水日变化峰值时间主要表现为下午、清晨、夜间3类典型位相,且整体而言降水频次的清晨峰值更凸出,降水强度以下午峰值为主。综合考虑降水量和降水频次的日变化峰值位相,发现中国大陆地区降水日变化峰值位相在空间分布上存在7个典型区域:下午峰值区(东北至华北山区、东南内陆地区)、夜间峰值区(四川盆地西部至云贵高原东部、华北平原西部贴近山地的区域)和清晨峰值区(华北平原东部、秦巴山区至华中西南部)各两个,以及傍晚至夜间峰值位相的青藏高原区。各典型区域内部具有较一致的降水量和频次的日峰值时间位相,而区域边缘或交界处降水量和频次的峰值位相则相反,主要是降水量的下午主峰值时段与降水频次的清晨主峰值时段的错位。从降水量、降水频次和降水强度的日变化的演变特征来看,午后峰值区、夜间峰值区和青藏高原的傍晚至夜间峰值区的多数台站,都存在降水量位相滞后于降水强度而超前于降水频次的特征,这应是降水演变过程中时间演变不对称性和对流云系发展演变的具体表现。  相似文献   

9.
华北地区夏季降水日变化的时空分布特征   总被引:5,自引:2,他引:3  
韩函  吴昊旻  黄安宁 《大气科学》2017,41(2):263-274
利用2008~2014年间全国自动站观测降水和CMORPH[CPC(Climate Prediction Center)morphing technique]卫星反演降水资料融合而成的0.1°×0.1°小时降水产品揭示了华北夏季降水的日变化特征,发现华北多数地区夏季降水量和降水频率日变化呈现出明显的双峰特征且存在明显的区域性差异。在太行山以西地区,降水量和降水频率的日峰值出现在傍晚18:00左右(北京时),规律性最强;而在太行山以东的平原和沿海地区,日峰值一般出现在上午。研究不同持续时间降水对总降水的贡献发现短时降水对傍晚的降水日峰值贡献较大,而长时降水则对凌晨的峰值影响更大。分析不同强度降水对总降水量的贡献结果表明,0.1~10 mm h-1强度降水较其它强度降水对夏季华北地区总降水量贡献更大,随着降水强度的增加降水量日变化的峰值个数增加。  相似文献   

10.
湖北省夏季降水日变化特征   总被引:3,自引:2,他引:1       下载免费PDF全文
利用2001—2014年湖北省77个气象观测站的整点逐时降水数据,通过划分不同区域和三种量级降水的方法,分析了夏季(6—8月)降水日变化特征。结果表明:1)湖北省夏季降水日变化特征非常明显,降水量曲线呈双峰结构,峰值出现在08时和17时(北京时间,下同),降水频次与降水强度均呈现"一主一次"的双峰结构,这主要与青藏高原东移来的天气系统自西向东的滞后性以及局地热力强迫有关,发生在傍晚(15—18时)的降水强度有明显的年际增强趋势。2)湖北省降水日变化特征区域差异显著,鄂西北与鄂西南降水峰值主要出现在傍晚和夜间,谷值出现在正午,鄂东三个区域的降水峰值出现在上午和傍晚,谷值出现在午夜。3)近14 a强度为0~20 mm/h的降水呈现减少趋势,主要发生在鄂西地区。其日变化曲线为"一主一次"的双峰结构,主(次)峰值出现在07(17)时。与之相反,短时强降水(≥20 mm/h)的发生概率东部大于西部,平原大于山区,有增加趋势的站点占总站点数的53.24%,峰(谷)值出现在17(12)时。短时特大强降水(≥50 mm/h)峰值出现在15—20时,03—14时出现概率较低。  相似文献   

11.
横断山系云岭余脉点苍山东西侧小时降水特性对比分析   总被引:2,自引:1,他引:1  
苏锦兰  李建  杨桂荣  杨澄 《气象》2015,41(1):17-24
利用横断山系云岭余脉点苍山东西侧两个国家级气象台站2005—2012年逐小时降水量数据,详细分析东侧和西侧降水特性及差异。结果表明点苍山东西侧多年平均降水气候态相似,两侧年降水量接近,降水季节演变一致,但小时尺度的降水变化却存在明显差异:降水量和降水频次日变化在东侧以单峰型为主,西侧则双峰型变化显著;东西侧均存在后半夜降水量和降水频次高峰,主要由持续6h及以上的长时降水事件引起,且该高峰对总降水量的贡献东侧略大于西侧、持续时间东侧略长于西侧;西侧在午后至傍晚出现另一个降水量和降水频次高峰,一般由持续6h以下的中、短时降水事件造成;累积小时降水量和降水频次的最大值东西侧均于凌晨出现,出现时间东侧滞后于西侧3h;累积小时降水量的最小值东侧出现于傍晚、西侧则在正午发生,而累积小时降水频次的最小值东西侧均出现在正午前后。小时雨强日变化西侧较东侧强烈,尤其是夜间,西侧存在21时和03—04时大雨强时段,东侧雨强则缓慢变化于清晨07—08时达最大。这种小时降水特性的东西差异受点苍山地形影响,南北走向高大山脉的特殊地形使两侧下垫面辐射差异在傍晚达最大,辐射强的西侧容易形成降水量、降水频次、小时雨强的傍晚高峰。该区域降水特性的不均匀分布使其成为西南复杂地形区气候区域差异的典型代表。  相似文献   

12.
利用1994~2013年5~9月喀什市气象站逐小时降水资料,分析喀什近20a降水日变化特征。研究表明,20时至翌日06时为降水量的高值阶段,最大值出现在01时,07时至19时为降水量的低值时段,最小值出现在16时。降水频次的高值区为00时至07时,降水最不易产生的时间为17时。降水强度最高值在20时,次高值为01时,也是累积降水量较大时刻,降水强度最低值出现在15时也是累积降水量的低值区。喀什的降水主要以短时性降水(1~3h)为主,多发生在傍晚至夜间,1h降水频次最多的是量级≤1mm的降水,但1.1mm≤R1≤3.0mm量级的降水贡献率最高。小雨、中雨及大雨降水过程最易发生时段均为前半夜,下午为各量级降水过程发生最少的时段。  相似文献   

13.
采用1981—2010年安徽省逐时降水资料,从降水量、降水频次和降水强度三个方面对不同量级降水日变化进行分析,研究表明:(1)降水量和降水频次呈双峰结构,降水强度则无明显峰值。小雨和中雨降水量峰值时间主要在下午,大雨呈现出上下午双峰结构,暴雨的峰值则出现于上午。经分析,这是由于不同日降水量级下持续性降水事件的构成不同所导致;(2)在空间分布上,各量级降水日变化有明显区域性特征。总体来看量级较小的降水峰值出现时间的空间分布较为一致,量级越大则一致性越差;(3)近30 a出现在下午的降水量峰值和降水强度峰值的年际变化较为一致,均在1993—2001年间有所加强。且在东亚夏季风较强的年份,安徽省降水峰值时间主要集中在午后;而在弱季风年,峰值时间出现于早晨的站点偏多。  相似文献   

14.
利用唐山2006—2013年区域自动站降水资料,分析了夏季降水和短历时强降水的日变化特征。结果指出,与一般性降水相比,短历时强降水更具夜间多发性,夜间降水量占总降水量的66.4%,降水量和降水频次日变化呈单峰结构,峰值出现在凌晨,谷值出现在午后,降水强度呈双峰结构,峰值出现在午后和凌晨,且8 a间夜间短历时强降水呈上升趋势。短历时强降水日变化特征地区差异较大,东北部出现频次最多,西南部频次最少、降水强度最大。唐山东北部呈簸箕状,西北东三面环山,强降水过程多东南风,迎风坡抬升加强上升运动,使其出现频次明显偏多;西南部临海,水汽条件比东北部好,故降水强度最大。东北部午后16时(北京时)的降水次峰值与西南部凌晨04时的峰值成因与海陆风昼夜变化关系密切。  相似文献   

15.
利用浙江省71个气象观测站的逐小时降水数据,分析2004—2016年夏季(6—8月)降水日变化特征。结果表明:(1)浙江省夏季降水量和降水频次日变化总体上呈现"一主一次"的双峰特征,降水量和降水频次主峰值分别出现在17:00前后和19:00前后。近13 a来,夏季降水量和降水频次有明显的增加趋势。(2)降水日变化特征区域差异明显。浙中西部地区和沿海岛屿的降水量、降水频次和强度日变化波动幅度较小,降水强度的峰值出现在09:00—11:00;浙南地区降水量、降水频次和强度日变化具有单峰特点,峰值均出现在15:00—20:00。(3)降水日变化与不同持续时间的降水事件有关,≥6 h持续性降水事件的降水峰值易出现在09:00前后,而<6 h短时降水事件的降水峰值出现在15:00—22:00。不同区域降水事件有所差异,浙中西部地区和沿海岛屿的降水量来源于持续性降水和短时降水事件的共同贡献,浙南地区降水量主要来源于短时降水事件的贡献。(4)短时强降水(20~50 mm·h^(-1))和特强降水(≥50 mm·h^(-1))易发生在温州、台州和宁波等沿海地区,其中杭州湾、台州局部地区是短时特强降水的高发区;短时强降水的日变化具有单峰特征,降水峰值出现在15:00—20:00。  相似文献   

16.
张涛  李亮亮  李建 《湖北气象》2022,41(1):50-57
为更好地理解和认识小尺度地形对降水特性的影响,利用位于云贵高原地区相近的两个国家基准站太华山和昆明站2006—2018年雨季(5—10月)小时降水资料,统计分析了两站降水精细化的时空特征.结果表明,两站的海拔高度差约500 m、站距约5 km,暖季降水量差异不大,但降水的精细特征却存在明显差异,主要表现为:(1)两站的降水量和平均降水强度年际差异不明显,但太华山站多数年份的降水频次远多于昆明站;(2)降水日变化上,太华山站在11—20时的累积降水量要高于昆明站;两站降水频次均具有双峰型特征,但在03—09时和11—17时太华山站的降水频次要明显高于昆明站,00—13时和21—23时昆明站的平均降水强度高于太华山站.(3)两站的降水事件特征不同,太华山站的降水事件次数和累积降水量都明显多于昆明站,主要由持续时间在6 h以上的降水事件贡献.(4)两站降水事件主要为共有降水事件,降水特性差异也主要由共有降水事件造成.太华山站先开始(结束)降水的共有降水事件次数比昆明站多(少),持续时间(降水频次)比昆明站长(多),短、长时降水事件的降水量(降水频次)比昆明站大(多),平均降水持续时间比昆明站多0.36 h.(5)两站单独降水事件占总降水事件的39.9%,太华山站的单独降水事件数是昆明站的1.83倍,而且平均持续时间长于昆明站.  相似文献   

17.
利用秦岭地区1961—2015年暖季(4—10月)国家级地面气象站观测的逐时降水资料,从降水逐候变化与降水日变化的角度,比较了秦岭南北两侧暖季降水的演变特征,研究表明:在逐候演变上,秦岭南北两侧均为夏秋双峰型降水,但北侧降水主峰值出现在秋季,秦岭南侧降水主峰值出现在夏季.在降水日变化上,夏秋两季中南侧降水量、降水频次和降水强度均以清晨峰值为主,仅在降水频次上夏季出现了午后的次峰值;而北侧降水量日变化夏秋变化较大,且主要由降水强度贡献,夏季降水强度在午后较强,而秋季清晨降水强度更大.对于不同持续时间的降水事件,南北两个区域在夏秋均表现为持续9h以上(3h以下)的降水为清晨(午后)降水峰值,其差别主要存在于持续时间为4~8h的降水事件中.  相似文献   

18.
董保举  徐安伦  苏锦兰 《气象》2023,49(11):1405-1413
基于大理国家气候观象台苍山-洱海梯度观测系统2011—2020年湿季小时降水资料,分析山顶、山腰和坝区3个站的降水日变化特征。结果显示:降水量日变化,坝区站呈现单峰型,山腰站和山顶站则是双峰型;降水频次日变化,坝区站和山顶站为单峰型,山腰站日变化比较平缓;各时次的降水量、降水频次基本随海拔高度的增加而增多;降水强度日变化,山顶站为双峰型,坝区站和山腰站波动较大,午后为小值区,夜间为大值区,3个站在14:00—17:00的降水强度相差不大,而其他时段山腰站和坝区站的降水强度比山顶站大。夜间降水量在持续时间2~16 h是大值区,随海拔的增加降水量大值区持续时间较长;白天降水量在持续时间小于6 h是大值区,随海拔的增加,大值出现的时间向后移。降水频次在持续时间小于6 h,3个站在白天、夜间分别有一个大值区,而持续时间7~18 h的只有山顶站夜间有大值区;坝区站和山顶站夜间降水频次大于白天降水频次,山腰站白天、夜间降水频次相差不大。长历时(中历时、短历时)的累计降水量、降水频次随海拔高度的增加而增大(减小);3个站长历时降水量(长历时降水频次)对总降水量(总降水频次)的贡献最大,贡献最小的是短...  相似文献   

19.
利用国家气象中心1998—2018年6—9月0.1°×0.1°分辨率的逐小时卫星融合降水资料,分析河北省暖季短时强降水(1 h降水量≥20 mm)的空间分布、日变化特征及成因,结果表明:短时强降水过程的平均小时降水量、降水频次、降水强度、峰值降水量自东南向西北递减,其中东部沿海降水量最大,太行山和燕山的迎风坡附近存在降...  相似文献   

20.
基于帕米尔高原东部100个气象站2013-2019年4-9月逐小时降水观测资料,分析了帕米尔高原东部降水量、降水频次和降水强度时空变化特征。结果表明:帕米尔高原东部年平均降水量呈南部少于北部,平原少于山区的特征。降水频次集中在西部山区,东南部最少。研究区北部和盆地边缘的降水强度大于西部和西南部的山区。逐月降水量呈北部和西北部高,盆地西部边缘地区最少,8月最多,4月最少。年平均降水频次逐月空间分布呈高值主要集中在研究区北部和西部,低值主要集中在盆地西部的边缘区域的特征。逐月降水强度的空间分布与降水量和频次也存在较大差异,降水强度在中间平原地区在4月最强。小时降水量峰值主要出现在12—23时,低值出现在00—10时。小时降水频次15时至次日 01时为强度高值时段,14—20时具有增长趋势。小时降水强度在日出前后达到最大值,其中00—09时为高值时段,10—23时为低值时段。帕米尔高原东部地区各月小时平均降水量主要集中在18时左右,降水频次主要集中在18—23时,夜间降水强度略微高于白天。年平均降水量,降水频次及降水强度与海拔高度之间存在明显的相关性,大概2500 m 以下降水量随着海拔高度的升高而增加,2500 m 以上降水量随着海拔高度的升高而降低。降水频次在3000 m 以下随着海拔高度的升高而增多,3000 m以上随着海拔高度的升高而减少。整体来讲,降水强度与海拔高度整体来呈负相关性,降水强度随着海拔高度的升高而减弱;大概2500 m 以下降水强度随着海拔高度而加强,2500 m 以上降水强度随着海拔高度的升高而减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号