首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
陕西省温室气体排放清单研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用IPCC指南推荐的碳排放计算方法,将省级温室气体排放源分为能源活动、工业生产、农业、林业、废弃物等5个单元,全面测算了2005—2013年陕西省温室气体排放清单。结果表明:2005—2013年,陕西省温室气体排放总量和人均碳排放量逐年增长且有加速趋势,而温室气体吸收总量却增长缓慢,净温室气体排放量增长趋势显著,单位GDP碳排放量呈波动下降趋势;能源部门的温室气体排放量占总排放比例最大,为78.42%~83.36%;工业过程、农业、废弃物处理排放所占比例分别为9.57%~14.78%、3.11%~9.02%、1.25%~1.98%;林业部门表现为碳汇,约9%的CO2排放被森林吸收。  相似文献   

2.
中国城市固体废弃物甲烷排放研究   总被引:13,自引:0,他引:13       下载免费PDF全文
甲烷(CH4)所引起的温室效应仅次于CO2,固体废弃物填埋处理所产生的CH4作为总的人为温室气体排放源的一部分,估算其排放量对于计算大气中整个温室气体增加所引起的气候效应具有重要的作用和意义。在以往研究的基础上,通过对典型城市生活垃圾的采样分析,确定了最近几年中国城市固体废弃物(MSW)中可降解有机碳(DOC)的含量,并根据IPCC计算CH4排放量的方法以及全国不同区域废弃物管理程度状况,估算得到CH4排放量在全国范围内从东部到西部逐渐减少,且在1994-2004年排放量逐年增加。  相似文献   

3.
废弃物处理温室气体排放的主要排放源之一为废水(生活污水和工业废水)处理CH4排放。根据统计资料和IPCC提供的方法,选择适合中国的排放因子,分析了中国废水处理2005-2010年的CH4排放特征和2000-2010年CH4产生的各驱动因子。并且根据中国的实际情况预测和分析了中国废水处理CH4排放趋势和排放潜力。结果显示:2010年中国生活污水处理CH4排放量为61.10万t,工业废水处理的CH4排放量为162.37万t,造纸等八大行业CH4排放量达到总CH4排放量的92%以上,2005-2010年的CH4排放量逐年增加;到2020年在减排情景下,生活污水处理CH4排放量为101.36万t,减排潜力为7.63万t,比2010年排放量增加了66%;工业废水处理CH4排放量233.93万t,减排潜力为25.99万t,比2010年排放量增加了44%。  相似文献   

4.
杨栋  申双和  张弥  李旭辉  肖薇 《气象科学》2014,34(3):325-334
目前温室气体清单的编制主要基于IPCC方法,该方法用于特定城市或区域清单编制时可能会引起较大的不确定性,而目前对城市/区域尺度清单的不确定性的分析还存在很大的欠缺。本文通过南京市和长三角温室气体排放因子甄选,应用IPCC方法计算了2009年南京市和长三角的人为温室气体排放量,并以其为个例利用蒙特卡洛方法开展城市和区域尺度的温室气体人为排放清单不确定性的初步探究。研究结果表明:南京市CH4和CO2排放量的95%的概率分布范围分别为(1.08~1.86)×105t和(6.50~7.41)×107t,不确定性分别为-21.74%~34.78%和-7.01%~5.87%;长三角CH4和CO2排放量的95%的概率分布范围分别为(4.07~5.89)×106t和(1.62~1.82)×109t,不确定性分别为-15.60%~22.24%和-6.04%~5.34%。  相似文献   

5.
半干旱草原温室气体排放/吸收与环境因子的关系研究   总被引:7,自引:0,他引:7  
静态箱—气相色谱法对内蒙古半干旱草原连续两年的实验观测研究结果表明,内蒙古草原是大气CO2和N2O的排放源,和CH4的汇。在植物生长不同季节,草原生态系统排放/吸收温室气体CO2、CH4和N2O的日变化形式各有不同,其中在植物生长旺季日变化形式最具特征。三种温室气体的季节排放/吸收高峰主要出现在土壤湿度较大的春融期和降雨较为集中时期。对所有草原植物生长季节,CO2净排放日变化形式均为白天出现排放低值,夜间出现排放高值。较高的温度有利于CO2排放,地上生物量决定着光合吸收CO2量值的高低。影响半干旱草原吸收CH4和排放N2O日变化形式的关键是土壤台水量和供氧状况,日温变化则主要影响日变化强度。吸收CH4和排放N2O的季节变化与土壤湿度季节变化分别呈线性反、正相关,相关系数均在0.4-0.6之间。自由放牧使CO2、N2O和CH4交换速率日较差降低,同时使N2O和CH4年度排放/吸收量减少和CO2年度排放量增加。  相似文献   

6.
附件一国家温室气体排放趋势及其履约进展   总被引:2,自引:0,他引:2  
 对《联合国气候变化框架公约》秘书处最新公布的温室气体排放数据进行统计分析,结果显示:相对于基准年(1990年),附件一国家温室气体排放总量整体呈下降趋势。其中,经济转型期国家温室气体排放总量总体上呈逐年下降趋势,非经济转型期国家的温室气体排放总量有逐年增长的趋势。美国和加拿大能源部门的温室气体排放量增长最为显著,相对于1990年,2005年其增幅分别为19.2%和28.6%;英国和德国能源部门温室气体减排量最为显著,其减幅分别为7.8%和17.4%。在2005年,有超过一半的附件一国家的实际排放量低于其目标排放量,履约进展状况良好。  相似文献   

7.
半干旱草原温室气体排放/吸收与环境因子的关系研究   总被引:13,自引:3,他引:10  
静态箱一气相色谱法对内蒙古半干旱草原连续两年的实验观测研究结果表明,内蒙古草原是大气CO2和N2O的排放源,而是CH4的汇.在植物生长不同季节,草原生态系统排放/吸收温室气体CO2,CH4和N2O的日变化形式各有不同,其中在植物生长旺季日变化形式最具特征.3种温室气体的季节排放/吸收高峰主要出现在土壤湿度较大的春融和降雨较为集中时期.所有草原植物生长季节CO2净排放日变化形式均为白天出现排放低值,夜间出现排放高值.较高的温度有利于CO2排放,地上生物量决定着光合吸收CO2量值的高低.影响半干旱草原吸收CH4和排放N2O日变化形式的关键是土壤含水量和供氧状况,日温变化则主要影响日变化强度.吸收CH4和排放N2O的季节变化与土壤湿度季节变化分别呈线性反、正相关,相关系数均在0.4~0.6之间.自由放牧使CO2、N2O和CH4交换速率日较差降低,同时使N2O和CH4年度排放/吸收量减少和CO2年度排放量增加.  相似文献   

8.
对《联合国气候变化框架公约》秘书处最新公布的温室气体排放数据进行统计分析,结果显示:相对于基准年(1990年),附件一国家温室气体排放总量整体呈下降趋势。其中,经济转型期国家温室气体排放总量总体上呈逐年下降趋势,非经济转型期国家的温室气体排放总量有逐年增长的趋势。美国和加拿大能源部门的温室气体排放量增长最为显著,相对于1990年,2005年其增幅分别为19.2%和28.6%;英国和德国能源部门温室气体减排量最为显著,其减幅分别为7.8%和17.4%。在2005年,有超过一半的附件一国家的实际排放量低于其目标排放量,履约进展状况良好。  相似文献   

9.
对<联合国气候变化框架公约>秘书处最新公布的温室气体排放数据进行统计分析,结果显示:相对于基准年(1990年),附件-国家温室气体排放总量整体呈下降趋势.其中,经济转型期国家温室气体排放总量总体上呈逐年下降趋势,非经济转型期国家的温室气体排放总量有逐年增长的趋势.美国和加拿大能源部门的温室气体排放量增长最为显著,相对于1990年,2005年其增幅分别为19.2%和28.6%;英国和德国能源部门温室气体减排量最为显著,其减幅分别为7.8%和17.4%.在2005年,有超过一半的附件-国家的实际排放量低于其目标排放量,履约进展状况良好.  相似文献   

10.
污水处理厂运行过程中大量释放甲烷(CH4)和氧化亚氮(N2O),是重要的人为温室气体排放源。基于2005—2015年统计资料和IPCC核算方法,估算了2005—2015年中国生活污水处理厂CH4和N2O排放,分析了其排放特征和影响因素;依据碳中和愿景设定3种减排情景(低减排、中减排和高减排),并预估了2020—2050年排放趋势和时空变化。结果表明:2005—2015年间污水处理厂温室气体排放量呈稳定增长趋势,CH4从1135.37万t CO2e上升至1501.45万t CO2e,N2O从2651.08万t CO2e上升为2787.05万t CO2e,年均增速分别为2.8%和0.5%。3种减排情景下,2020—2050年CH4和N2O排放量时间上呈先增后减趋势,低减排情景下CH4和N2O排放量分别于2036年和2025年达到峰值,分别为2431万和2819万t CO2e;中减排情景和高减排情景下CH4峰值点分别出现在2027和2025年,而N2O排放峰值均出现在2025年。2050年中减排和高减排情景下CH4排放量相较于低减排情景减排率约为47%和94%;2050年低减排、中减排和高减排情景下N2O排放量相较于2015年分别减排了12%、53%和95%。CH4和N2O排放量在空间上差异显著,华东地区排放量高,西北地区排放量低,东南区域所在省份排放量整体高于西北区域省份。影响因素中的经济发展程度与温室气体排放量密切相关。  相似文献   

11.
Livestock constitutes an integral component of Indian agriculture sector and also a major source of GHGs emissions. The study presents a detailed inventory of GHG emissions at district/state level from different age-groups, indigenous and exotic breed of different Indian livestock categories estimated using the recent census 2003 and country-specific emission coefficients based on IPCC guidelines. The total methane emission including enteric fermentation and manure management of livestock was estimated at 11.75 Tg/year for the year 2003. Enteric fermentation constitutes ~91 % of the total methane emissions from Indian livestock. Dairy buffalo and indigenous dairy cattle together contribute 60 % of the methane emissions. The total nitrous oxide emission from Indian livestock for the year 2003 is estimated at 1.42 Gg/year, with 86.1 % contribution from poultry. The total GHGs emission from Indian livestock is estimated at 247.2 Mt in terms of CO2 equivalent emissions. Although the Indian livestock contributes substantially to the methane budget, the per capita emission is only 24.23 kgCH4/animal/year. Using the remote sensing derived potential feed/fodder area available for livestock, the average methane flux was calculated as 74.4 kg/ha. The spatial patterns derived in GIS environment indicated the regions with high GHGs emissions that need to be focused subsequently for mitigation measures. The projected estimates indicate a likely increase of 40 % in methane emissions from buffalo population.  相似文献   

12.
基于2001-2015年黑龙江省温室气体排放统计核算数据,对地区GDP与温室气体排放的环境库兹涅茨曲线关系检验呈现倒U型,预期2019年达到理论拐点;通过偏最小二乘回归模型得到4个减排路径的年平均减排效果顺序依次为单位GDP化石能源消费量减少、经济结构调整、人均GDP增长、贸易结构变化;减排路径对应脉冲响应函数的动态冲击效果分别为波动性增排、收敛性减排、发散性减排、转变的排放作用;推动黑龙江省温室气体减排的路径顺序为控制化石能源消费量、优化经济结构、发展低碳经济、调整贸易结构。  相似文献   

13.
The number of electric and electronic products (e-products) owned by Chinese households has multiplied in the past decade. In this study, we analyz the GHG emissions from e-products in Chinese households in order to understand and determine how to mitigate their effects on climate change. The results show that the usage stage of e-products has become an important source of GHG emissions in China, with total GHG emissions of these household e-products reaching about 663 million tons CO2 eq., accounting for about 8.85 % of all Chinese GHG emissions in 2012. The average GHG emission per household per year in China was 1538 kg CO2 eq. in 2012, a little higher than that of Norwegian households (1200 kg CO2 eq.). The electricity mix plays a very important role in GHG emissions, and the 78 % coal-fired power consumption accounted for 99.69 % of the total GHG emissions. Our research also supports the view that GHG emissions from household e-products increased with economic level. To reduce the GHG emissions of household e-products, the development of energy-saving e-products and changes to the electricity mix would be very effective measures.  相似文献   

14.
减少粮食浪费不仅关乎粮食安全,而且对于温室气体减排与生态环境保护也至关重要。本文基于生命周期理论,构建了餐厅食物消费模型;然后通过对北京某风味餐厅的现场调研,量化评估了餐厅每人次产生的平均温室气体排放量,并对餐厅剩余食物产生的原因以及通过减少餐厅食物剩余带来的温室气体减排潜力进行了系统分析。研究结果表明,一个中等规模的北京风味餐厅的总温室气体排放量可达每年225.28 t CO2当量(CO2e),即2.50 kg CO2e/人次;人均每餐食物剩余为97.2 g。朋友聚餐以及其他公共环境中消费的食物剩余量均明显高于普通日常就餐,点菜过多和口味与想象不符是产生剩余的重要原因;而学历、年龄较低的消费者更容易产生食物浪费。核算结果表明,在不产生食物浪费的情况下,可减少10.55%来自于餐厅食物消费的温室气体排放,平均约为0.26 kg CO2e/人次。通过与食物消费相关的温室气体减排分析,以及制定可行的政策,不仅可以减少温室气体排放,而且可以推进可持续消费发展。  相似文献   

15.
《Climate Policy》2001,1(4):481-497
This paper presents a new sector-based framework — called the multi-sector convergence approach — for negotiating binding national GHG mitigation targets after the first budget period defined by the Kyoto Protocol (2008–2012). The major characteristics of this approach are that: (i) it is based on the distinction of different sectors within the national economy; (ii) it prescribes that, in principle, the amount of per capita emission assignments should ultimately converge to the same level for all countries; (iii) it accounts for differences in national circumstances by offering the opportunity to grant additional emission allowances to countries facing specific circumstances that justify higher emission assignments; and (iv) it offers a framework for negotiating mitigation commitments among parties of the UNFCCC, including a (gradual) participation of developing countries that pass a certain threshold level of per capita emissions. In addition to briefly discussing the underlying principles of promising proposals to differentiate future GHG mitigation commitments, the paper outlines the methodology and major characteristics of the multi-sector convergence (MSC) approach, followed by some numerical illustrations. The paper is concluded by a preliminary assessment of the MSC approach.  相似文献   

16.
To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 to early 2005) in three rice-based cultivation systems, which are a permanently flooded rice field cultivated with a single time and followed by a non-rice season (PF), a rice-wheat rotation system (RW) and a rice-rapeseed rotation system (RR) in a hilly area in Southwest China. The results showed that the total CH4 emissions from PF were 646.3±52.1 and 215.0±45.4 kg CH4 hm-2 during the rice-growing period and non-rice period, respectively. Both values were much lower than many previous reports from similar regions in Southwest China. The CH4 emissions in the rice-growing season were more intensive in PF, as compared to RW and RR. Only 33% of the total annual CH4 emission in PF occurred in the non-rice season, though the duration of this season is two times longer than the rice season. The annual mean N2O flux in PF was 4.5±0.6 kg N2O hm-2 yr-1. The N2O emission in the rice-growing season was also more intensive than in the non-rice season, with only 16% of the total annual emission occurring in the non-rice season. The amounts of N2O emission in PF were ignorable compared to the CH4 emission in terms of the global warming potential (GWP). Changing PF to RW or RR not only eliminated CH4 emissions in the non-rice season, but also substantially reduced the CH4 emission during the following rice-growing period (ca. 58%, P<0.05). However, this change in cultivation system substantially increased N2O emissions, especially in the non-rice season, by a factor of 3.7 to 4.5. On the 100-year horizon, the integrated GWP of total annual CH4 and N2O emissions satisfies PF>>RR≈RW. The GWP of PF is higher than that of RW and RR by a factor of 2.6 and 2.7, respectively. Of the total GWP of CH4 and N2O emissions, CH4 emission contributed to 93%, 65% and 59% in PF, RW and RR, respectively. These results suggest that changing PF to RW and RR can substantially reduce not only CH4 emission but also the total GWP of the CH4 and N2O emissions.  相似文献   

17.
《Climate Policy》2013,13(4):481-497
Abstract

This paper presents a new sector-based framework—called the multi-sector convergence approach—for negotiating binding national GHG mitigation targets after the first budget period defined by the Kyoto Protocol (2008–2012). The major characteristics of this approach are that: (i) it is based on the distinction of different sectors within the national economy; (ii) it prescribes that, in principle, the amount of per capita emission assignments should ultimately converge to the same level for all countries; (iii) it accounts for differences in national circumstances by offering the opportunity to grant additional emission allowances to countries facing specific circumstances that justify higher emission assignments; and (iv) it offers a framework for negotiating mitigation commitments among parties of the UNFCCC, including a (gradual) participation of developing countries that pass a certain threshold level of per capita emissions. In addition to briefly discussing the underlying principles of promising proposals to differentiate future GHG mitigation commitments, the paper outlines the methodology and major characteristics of the multi-sector convergence (MSC) approach, followed by some numerical illustrations. The paper is concluded by a preliminary assessment of the MSC approach.  相似文献   

18.
Mitigating Agricultural Emissions of Methane   总被引:7,自引:0,他引:7  
Agricultural crop and animal production systems are important sources and sinks for atmospheric methane (CH4). The major CH4 sources from this sector are ruminant animals, flooded rice fields, animal waste and biomass burning which total about one third of all global emissions. This paper discusses the factors that influence CH4 production and emission from these sources and the aerobic soil sink for atmospheric CH4 and assesses the magnitude of each source. Potential methods of mitigating CH4 emissions from the major sources could lead to improved crop and animal productivity. The global impact of using the mitigation options suggested could potentially decrease agricultural CH4 emissions by about 30%.  相似文献   

19.
There is growing concern that increasing concentrations of greenhouse gases in the atmosphere have been responsible for global warming through their effect on radiation balance and temperature. The magnitude of emissions and the relative importance of different sources vary widely, regionally and locally. The Indus Basin of Pakistan is the food basket of the country and agricultural activities are vulnerable to the effects of global warming due to accelerated emissions of GHGs. Many developments have taken place in the agricultural sector of Pakistan in recent decades in the background of the changing role of the government and the encouragement of the private sector for investment in new ventures. These interventions have considerable GHG emission potential. Unfortunately, no published information is currently available on GHG concentrations in the Indus Basin to assess their magnitude and emission trends. The present study is an attempt to estimate GHG (CO2, CH4 and N2O) emissions arising from different agro-ecosystems of Indus Basin. The GHGs were estimated mostly using the IPCC Guidelines and data from the published literature. The results showed that CH4 emissions were the highest (4.126 Tg yr^-1) followed by N20 (0.265 Tg yr^-1) and CO2 (52.6 Tg yr^-1). The sources of CH4 are enteric fermentation, rice cultivation and cultivation of other crops. N2O is formed by microbial denitrification of NO3 produced from applied fertilizer-N on cropped soils or by mineralization of native organic matter on fallow soils. CO2 is formed by the burning of plant residue and by soil respiration due to the decomposition of soil organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号