首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 18 毫秒
1.
采用基于历史资料的模式距平订正法(ANO),利用2011~2015年欧洲中心高分辨率数值预报(ECMWF)的地面2m温度和广西区域自动站气温观测资料,对2016年广西区域2m温度预报进行订正试验,对比分析订正前和订正后的预报误差,结果表明:EC对广西区域2m温度的预报误差随着预报时效增加而逐渐增大,午后误差较大,夜间误差较小,预报值大多偏低。0~72h预报(较短预报时效)冬季误差较小,夏季误差较大;72~240h预报(较长预报时效)夏季误差较小,秋季和冬季误差较大。随预报时效增加,误差增大的幅度夏季较小,冬季较大。误差的离散度在较短预报时效的午后为冬季较小,夏季较大,在较长预报时效及夜间则与之相反。ANO方法对午后温度预报的订正效果优于当日其他时刻。该方法对夏季的温度预报有很好的订正效果,秋季的订正效果次之,春季的订正效果不明显,冬季的订正效果为负面作用。  相似文献   

2.
基于乌鲁木齐区域数值预报业务系统,运用MET检验工具,对2017年各季节DOGRAFSv1.0预报性能进行客观检验。结果表明:(1)2m温度日间预报温度整体偏低,夜间多数站点预报温度偏高;冬季预报温度偏高,其他三个季节温度预报整体偏低。10m风速冬季模拟性能最差,春季次之;所有季节风速预报均偏大。(2)夏季、秋季高空温度预报误差小,在3.0℃以内,冬季误差最大,温度预报整体呈冷偏差;不同季节高空位势高度随高度增加误差增大,误差约在6.5~12.0gpm,预报高度比实际高度偏低;不同季节高空U、V风随高度增加误差先增大后减小,均方根误差分别为2.4~6.2m/s和1.8~5.2m/s,U风预报整体比实况偏小,V风预报整体比实况偏大。(3)冬季大阈值降水漏报率较高,12.1mm阈值降水Bias评分仅为0.2,秋季大阈值降水空报率较高,12.1mm阈值降水Bias评分在2.0以上,夏季空、漏报率较低;在新疆地区,四个时段中14~20 BJT 、20~次日02 BJT空报站点数多于漏报,14~20 BJT空报率最高,02~08 BJT漏报率最高,08~14BJT晴雨预报以漏报为主;日间Ts评分高于夜间。  相似文献   

3.
利用欧洲中期天气预报中心0.75°×0.75°再分析资料,对中国海岸线两侧相邻区域内的风能、风速进行研究,讨论不同季节、不同区域风能、风速的分布特征;利用WRF(Weather Research Forecast)模式模拟海表面温度上升和城市化发展对中国东部沿海风能的影响。结果表明:1)中国沿海风能的时空分布不均一,季节变化明显。春季渤海湾区域风能明显大于其他三区(华东沿海、东南沿海和南海北部沿海区域)。夏季渤海湾区域风能显著小于其他三区,而华东沿海区域风能稍大。秋季东南沿海和南海北部沿海区域风能较大。冬季沿海四区风能大小接近。一般而言,秋冬季风能较大、春夏季风能较小,夏季风能显著小于冬季。2)不同区域、不同季节风速的年际变化存在明显差异。除冬季东南沿海区域风速有增大趋势外,其他区域各季节风速都呈缓慢减小趋势,但减小幅度很小。3)海表温度升高在不同季节对风速的影响不同。春季渤海湾和山东半岛、北部湾沿海及杭州湾风速随海温升高而增强。夏季海温升高幅度不同,则风速显著变化区域不同,但大部分沿海区域风速随海温升高而增强。秋冬季风速随海表温度升高而增强,影响区域较稳定:秋季东南沿海和华东沿海区域风速增强,冬季渤海湾和南海北部沿海区域风速增强。4)城市化发展增大了地表摩擦力,使得夏秋季登陆我国的热带气旋迅速减弱,沿海风速随之减小。  相似文献   

4.
选取2014年1月、4月、7月、10月的GRAPES_GFS 2.0预报产品和对应时刻的NCEP FNL分析资料进行对比。从时间演变看,南、北半球的非系统误差均在各自冬季达到极盛,误差呈现周期性变化规律。位势高度场的非系统误差随时间演变先呈指数增长,后呈线性增长,温度场和纬向风场的误差则近似于线性增长。从空间分布看,GRAPES_GFS 2.0的非系统误差大值主要分布在中高纬度地区,呈条带状分布,误差大值区域基本不随预报时效的变化而发生变化;位势高度场和纬向风场的误差大值区出现在对流层顶附近,而温度场的误差大值区则出现在边界层顶附近。将误差增长曲线参数化拟合后发现,南半球的初始场误差、可预报上限和初始场误差占比均高于北半球,随离地高度增加初始场误差占比逐渐减小。  相似文献   

5.
通过选取2014年1月、4月、7月、10月的GRAPES_GFS 2.0预报产品和NCEP FNL分析资料进行对比分析,发现GRAPES_GFS 2.0的系统误差具有以下特性:位势高度场误差的空间分布具有纬向条带状或波列状特征,误差大值集中在中高纬度地区,低纬度地区误差较小。误差在南北半球各自的冬季最大、夏季最小,并呈现明显的季节变化特征。误差随预报时效的增速略低于线性增速且不同预报时效下误差随高度变化的曲线趋势相似。温度场误差的空间分布相对均匀,误差大值位于30°S~30°N附近地区。纬向风场误差没有十分明显的分布规律,与纬度变化、海陆分布和地形的关系均不密切,西风误差和东风误差交替出现。结果表明:模式对冬季中高纬度地区和边界层及对流层顶的模拟技巧尚需提高。明确GRAPES_GFS 2.0的系统误差分布特性,有助于有针对性地进行模式订正,改善误差大值区域的模式预报方法。  相似文献   

6.
王慧  隋伟辉 《气象科技》2013,41(4):720-725
利用1988-2010年CCMP(Cross Calibrated Multi-Platform)高时空分辨率10 m风场分析了我国近海海区的大风(6级以上)日数和大风风速的空间分布特征,并且按照中央气象台对近海海区的划分,分析了近海18个海区大风的季节变化特征.我国近海大风日数高值中心及大风风速高值中心都集中于巴士海峡、台湾海峡和南海东北部海域,在巴士海峡和南海东北部海域交界处最高可达140天以上,平均大风风速达到13m/s以上.从季节变化来看,大风日数和大风风速充分体现了东亚季风冬强夏弱的特点.冬半年,大风日数及风速高值中心一直位于东海东北部、台湾海峡、巴士海峡、南海东北部以及南海西南部海域,12月是一年之中大风日数和强度的峰值时期.从4月开始,南海西南部的高值中心消失,而以北海域的高值区的分布基本不变,这种情况一直持续到9月.近海18个海区的季节变化呈现出不同的区域差别,南海中部和南部的4个海域大风日数呈双峰型变化,冬季的12月至次年1月出现最高值,夏季西南季风时期的7-8月出现次高值.除琼州海峡外,包括南海北部海域的其余13个海区高值均在冬季12月至次年1月,低值出现在夏季6-7月.  相似文献   

7.
1980~2014年中国生态脆弱区气候变化特征分析   总被引:1,自引:0,他引:1  
为了全面把握20世纪80年代以来中国生态脆弱区气候变化的特征,利用基于全国2000多个站点的格点化逐月资料,对中国典型生态脆弱区1980~2014年的日平均气温、日最高和最低气温、降水、相对湿度、风速和蒸发皿蒸发量的变化特征进行了分析。结果表明:(1)中国生态脆弱区日平均气温、日最高和最低气温几乎都呈上升趋势;日平均气温增幅北方大于南方;北方生态脆弱区日平均气温、日最高和最低气温、南方生态脆弱区日最低气温的季节增幅多为春季最大,秋季或冬季最小。(2)全区平均降水变化趋势不明显;生态脆弱区降水距平百分率春季多为增长趋势,夏季多为减少趋势,秋、冬季和年北方多为增长趋势,南方多为减少趋势。(3)相对湿度以减少趋势为主,只有黄土高原南部脆弱区秋、冬季和干旱半干旱区脆弱区冬季相对湿度距平百分率的趋势为正,这几个正值区同时也是降水增长大值区。(4)风速基本为减少趋势,春季减少趋势最大。(5)全区平均蒸发皿蒸发量春、夏季和年为减少趋势,冬季为增长趋势;北方生态脆弱区蒸发皿蒸发量四季和年多呈减少趋势;南方生态脆弱区蒸发皿蒸发量春、夏季以减少趋势为主,秋、冬季和年呈增长趋势。  相似文献   

8.
张鑫宇  陈敏  范水勇 《气象》2023,(5):624-632
地形不匹配会导致风速预报出现偏差。Monin-Obukhov(莫宁-奥布霍夫)相似理论表明近地面风速垂直变化符合对数率特征,基于相似理论并引入大气稳定度判定因子构建偏差订正方案,将地面风速预报由模式地形订正到实际地形。针对冬季和夏季华北区域内760多个站点进行15 d的批量试验发现,使用订正方案后冬季和夏季00时(世界时)起始预报的模式前12 h风速预报的平均偏差可以降低20%以上,24 h预报偏差降幅也可达到10%以上,不同预报时效内风速的均方根误差可降低5%~8%。说明使用偏差订正方案可以对模式地面风速预报产生明显正效果。  相似文献   

9.
NCEP集合预报系统在亚欧和北美区域的预报效果对比   总被引:2,自引:1,他引:1  
使用NCEP集合预报系统(EPS)输出的500hPa位势高度场预报资料和相应的NCEP/NCAR再分析资料,针对集合平均预报和概率预报,采用多种预报效果检验评价方法,对该系统在亚欧和北美区域的预报效果进行全面的分析比较。总体而言,NCEP—EPS对亚欧区域的环流集合预报效果不亚于其对北关区域的预报效果。1)ACC检验表明,亚欧区域的集合平均预报效果在除冬季外的三个季节都明显优于北美区域,可用预报的时效相差达0.6~1d,且夏季的差别最大。RMSE检验表明,亚欧区域的预报效果在四个季节里均优于北美区域。2)集合概率预报可靠性的季节差别不明显,均为预报时效较短(长)时,北关(亚欧)区域的可靠性更好。系统对亚欧区域的事件识别范围相对较小,但其预报可靠性较高,北美区域则正好相反。3)夏季亚欧区域的集合概率预报效果明显优于北美区域,秋季和冬季北关区域的预报效果较好,春季在预报时效小于5d时北美区域占优,而其后则是亚欧区域的预报分辨能力更好。  相似文献   

10.
利用1998—2013年热带测雨卫星(TRMM)3A12资料,对南海及其周边地区降水、云和潜热的三维特征及其变化进行了对比研究,把南海及其周边地区分为四个区域:华南地区、中南半岛、马来群岛、南海。结果表明:(1)地面降水率EOF分析的第一、二模态方差贡献率分别为57.16%和8.72%,第一模态向量场均为正值,降水呈现南多北少的分布特征;第二模态向量场体现了降水变化南北反相的特征,马来群岛降水变化与其他三个区域反相。从两个模态时间系数序列看出,1998—2005年整个区域降水总体减少,区域降水北部增多南部减少;2005—2013年整个区域降水总体增多,区域降水南部增多北部减少。(2)南海及其周边地区降水夏秋季多,春冬季少,降水中心春夏季北移,秋冬季南撤,其中马来群岛夏季降水最少,冬季最多;其它三个区域都是夏季降水最多,华南和中南半岛冬季最少,南海春季最少。(3)赤道附近对流降水为主,23 °N以北区域层云降水为主,5~23 °N之间区域两种类型降水比例随季节变化,其中陆地降水比例随季节变化明显,特别是华南地区陆地夏季对流降水比例大于50%,冬季层云降水比例大于80%;海洋对流降水所占比例普遍大于50%,随季节变化小。(4)云冰、云水含量水平分布大值区与降水大值区相对应;二者随高度先增加后减少,云冰在13 km高度达到最大值,云水在2.5 km高度达到最大。春冬季,马来群岛云冰含量最大;夏秋季,南海云冰含量最大。云水含量在四个季节都以南海最大。(5)潜热加热率水平分布大值区与降水大值区相对应;随高度呈双峰分布,峰值分别出现在1~2 km高度和4 km高度处,春冬季马来群岛潜热加热率最大。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号