首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
于子棚  刘海龙  林鹏飞 《大气科学》2017,41(5):1087-1100
海洋中的潮汐混合对大西洋经圈翻转环流AMOC(Atlantic Meridional Overturning Circulation)模拟的影响是海洋环流模式研究的热点问题之一。本文采用IAP/LASG发展的气候系统海洋模式LICOM(LASG/IAP Climate system Ocean Model)及与海冰耦合模式进行了有无潮汐混合方案的试验,重点探讨了潮汐混合对AMOC强度模拟的影响。结果显示,引入潮汐混合后模拟的AMOC强度极大值比对照试验增加约1倍,更接近RAPID(Rapid Climate Change Programme)观测。而且,潮汐混合试验中模拟的AMOC上层环流深度(3200 m)比对照试验加深1000 m左右,同样更接近RAPID观测。海洋底部的垂直混合增强,使海洋层结变得更加不稳定,加强了北大西洋高纬地区,特别是拉布拉多海等地区的深对流,这是AMOC加强的直接原因。同时,潮汐混合试验中上层海洋环流也加强,增加了中低纬副热带高盐海水向高纬输送,使表层增密,海洋层结更加不稳定,也可以进一步增强AMOC。  相似文献   

2.
The influence of ocean circulation changes on heat uptake is explored using a simply-configured primitive equation ocean model resembling a very idealized Atlantic Ocean. We focus on the relative importance of the redistribution of the existing heat reservoir (due to changes in the circulation) and the contribution from anomalous surface heat flux, in experiments in which the surface boundary conditions are changed. We perform and analyze numerical experiments over a wide range of parameters, including experiments that simulate global warming and others that explore the robustness of our results to more general changes in surface boundary conditions. We find that over a wide range of values of diapycnal diffusivity and Southern Ocean winds, and with a variety of changes in surface boundary conditions, the spatial patterns of ocean temperature anomaly are nearly always determined as much or more by the existing heat reservoir redistribution than by the nearly passive uptake of temperature due to changes in the surface boundary conditions. Calculating heat uptake by neglecting the existing reservoir redistribution, which is similar to treating temperature as a passive tracer, leads to significant quantitative errors notably at high-latitudes and, secondarily, in parts of the main thermocline. Experiments with larger circulation changes tend to produce a relatively larger magnitude of existing reservoir redistribution, and a faster growing effective heat capacity of the system. The effective heat capacity is found to be sensitive to both vertical diffusivity and Southern Ocean wind.  相似文献   

3.
In response to increasing atmospheric concentrations of greenhouse gases, the rate of time-dependent climate change is determined jointly by the strength of climate feedbacks and the efficiency of processes which remove heat from the surface into the deep ocean. This work examines the vertical heat transport processes in the ocean of the HADCM2 atmosphere–ocean general circulation model (AOGCM) in experiments with CO2 held constant (control) and increasing at 1 per year (anomaly). The control experiment shows that global average heat exchanges between the upper and lower ocean are dominated by the Southern Ocean, where heat is pumped downwards by the wind-driven circulation and diffuses upwards along sloping isopycnals. This is the reverse of the low-latitude balance used in upwelling–diffusion ocean models, the global average upward diffusive transport being against the temperature gradient. In the anomaly experiment, weakened convection at high latitudes leads to reduced diffusive and convective heat loss from the deep ocean, and hence to net heat uptake, since the advective heat input is less affected. Reduction of deep water production at high latitudes results in reduced upwelling of cold water at low latitudes, giving a further contribution to net heat uptake. On the global average, high-latitude processes thus have a controlling influence. The important role of diffusion highlights the need to ensure that the schemes employed in AOGCMs give an accurate representation of the relevant sub-grid-scale processes. Received: 8 July 1999 / Accepted: 17 November 1999  相似文献   

4.
The heat budget of the upper Arctic Ocean is examined in an ensemble of coupled climate models under idealised increasing CO2 scenarios. All of the experiments show a strong amplification of surface air temperatures but a smaller increase in sea surface temperature than the rest of the world as heat is lost to the atmosphere as the sea-ice cover is reduced. We carry out a heat budget analysis of the Arctic Ocean in an ensemble of model runs to understand the changes that occur as the Arctic becomes ice free in summer. We find that as sea-ice retreats heat is lost from the ocean surface to the atmosphere contributing to the amplification of Arctic surface temperatures. Furthermore, heat is mixed upwards into the mixed layer as a result of increased upper ocean mixing and there is increased advection of heat into the Arctic as the ice edge retreats. Heat lost from the upper Arctic Ocean to the atmosphere is therefore replenished by mixing of warmer water from below and by increased advection of warm water from lower latitudes. The ocean is therefore able to contribute more to Arctic amplification.  相似文献   

5.
Atmosphere?Cocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50?C70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.  相似文献   

6.
The increase of atmospheric CO2 concentrations due to anthropogenic activities is substantially damped by the ocean, whose CO2 uptake is determined by the state of the ocean, which in turn is influenced by climate change. We investigate the mechanisms of the ocean’s carbon uptake within the feedback loop of atmospheric CO2 concentration, climate change and atmosphere/ocean CO2 flux. We evaluate two transient simulations from 1860 until 2100, performed with a version of the Max Planck Institute Earth System Model (MPI-ESM) with the carbon cycle included. In both experiments observed anthropogenic CO2 emissions were prescribed until 2000, followed by the emissions according to the IPCC Scenario A2. In one simulation the radiative forcing of changing atmospheric CO2 is taken into account (coupled), in the other it is suppressed (uncoupled). In both simulations, the oceanic carbon uptake increases from 1 GT C/year in 1960 to 4.5 GT C/year in 2070. Afterwards, this trend weakens in the coupled simulation, leading to a reduced uptake rate of 10% in 2100 compared to the uncoupled simulation. This includes a partial offset due to higher atmospheric CO2 concentrations in the coupled simulation owing to reduced carbon uptake by the terrestrial biosphere. The difference of the oceanic carbon uptake between both simulations is primarily due to partial pressure difference and secondary to solubility changes. These contributions are widely offset by changes of gas transfer velocity due to sea ice melting and wind changes. The major differences appear in the Southern Ocean (?45%) and in the North Atlantic (?30%), related to reduced vertical mixing and North Atlantic meridional overturning circulation, respectively. In the polar areas, sea ice melting induces additional CO2 uptake (+20%).  相似文献   

7.
Assessments of the impacts of uncertainties in parameters on mean climate and climate change in complex climate models have, to date, largely focussed on perturbations to parameters in the atmosphere component of the model. Here we expand on a previously published study which found the global impacts of perturbed ocean parameters on the rate of transient climate change to be small compared to perturbed atmosphere parameters. By separating the climate-change-induced ocean vertical heat transport in each perturbed member into components associated with the resolved flow and each parameterisation scheme, we show that variations in global mean heat uptake in different perturbed versions are an order of magnitude smaller than the average heat uptake. The lack of impact of the perturbations is attributed to (1) the relatively small impact of the perturbation on the direct vertical heat transport associated with the perturbed process and (2) a compensation between those direct changes and indirect changes in heat transport from other processes. Interactions between processes and changes appear to combine in complex ways to limit ensemble spread and uncertainty in the rate of warming. We also investigate regional impacts of the perturbations that may be important for climate change predictions. We find variations across the ensemble that are significant when measured against natural variability. In terms of the experimental set-up used here (models without flux adjustments) we conclude that perturbed physics ensembles with ocean parameter perturbations are an important component of any probabilistic estimate of future climate change, despite the low spread in global mean quantities. Hence, careful consideration should be given to assessing uncertainty in ocean processes in future probabilistic assessments of regional climate change.  相似文献   

8.
An ocean general circulation model coupled to an energy-moisture balance atmosphere model is used to investigate the sensitivity of global warming experiments to the parametrisation of sub-grid scale ocean mixing. The climate sensitivity of the coupled model using three different parametrisations of sub-grid scale mixing is 3°C for a doubling of CO2 (6°C for a quadrupling of CO2). This suggests that the ocean has only a weak feedback on global mean surface air temperature although significant regional differences, notably at high latitudes, exist with different sub-grid scale parametrisations. In the experiment using the Gent and McWilliams parametrisation for mixing associated with mesoscale eddies, an enhancement of the surface response in the Southern Ocean is found. This enhancement is largely due to the existence of more realistic sea-ice in the climatological control integration and the subsequent enhanced ice-albedo feedback upon warming. In accordance with earlier analyses, the Gent and McWilliams scheme decreases the global efficiency of ocean heat uptake. During the transient phase of all experiments, the North Atlantic overturning initially weakened but ultimately recovered, surpassing its former strength. This suggests that in the region around the North Atlantic the ocean acts as a negative feedback on local warming during the transient phase but a positive feedback at equilibrium. During the transient phase of the experiments with a more sophisticated and realistic parametrisation of sub-grid scale mixing, warmed Atlantic water was found to penetrate at depth into the Arctic, consistent with recent observations in the region. Received: 14 October 1998 / Accepted: 27 April 1999  相似文献   

9.
This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979–2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S–5°N and descending over 15°–25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.  相似文献   

10.
A global ocean general circulation model (L30T63) is employed to study the uptake and distribution of anthropogenic CO2 in the ocean. A subgrid-scale mixing scheme called GM90 is used in the model. There are two main GM90 parameters including isopycnal diffusivity and skew (thickness) diffusivity. Sensitivities of the ocean circulation and the redistribution of dissolved anthropogenic CO2 to these two parameters are examined. Two runs estimate the global oceanic anthropogenic CO2 uptake to be 1.64 and 1.73 Pg C yr-1 for the 1990s, and that the global ocean contained 86.8 and 92.7 Pg C of anthropogenic CO2 at the end of 1994, respectively. Both the total inventory and uptake from our model are smaller than the data-based estimates. In this presentation, the vertical distributions of anthropogenic CO2 at three meridional sections are discussed and compared with the available data-based estimates. The inventory in the individual basins is also calculated. Use of large isopycnal diffusivity can generally improve the simulated results, including the exchange flux, the vertical distribution patterns, inventory, storage, etc. In terms of comparison of the vertical distributions and column inventory, we find that the total inventory in the Pacific Ocean obtained from our model is in good agreement with the data-based estimate, but a large difference exists in the Atlantic Ocean, particularly in the South Atlantic. The main reasons are weak vertical mixing and that our model generates small exchange fluxes of anthropogenic CO2 in the Southern Ocean. Improvement in the simulation of the vertical transport and sea ice in the Southern Ocean is important in future work.  相似文献   

11.
The climate of the last glacial maximum (LGM) is simulated with a coupled climate model. The simulated climate undergoes a rapid adjustment during the first several decades after imposition of LGM boundary conditions, as described in Part 1, and then evolves toward equilibrium over 900 model years. The climate simulated by the coupled model at this period is compared with observationally-based LGM reconstructions and with LGM results obtained with an atmosphere-mixed layer (slab) ocean version of the model in order to investigate the role of ocean dynamics in the LGM climate. Global mean surface air temperature and sea surface temperature (SST) decrease by about 10 °C and 5.6 °C in the coupled model which includes ocean dynamics, compared to decreases of 6.3 and 3.8 °C in slab ocean case. The coupled model simulates a cooling of about 6.5 °C over the tropics, which is larger than that of the CLIMAP reconstruction (1.7 °C) and larger than that of the slab ocean simulation (3.3 °C), but which is in reasonable agreement with some recent proxy estimates. The ocean dynamics of the coupled model captures features found in the CLIMAP reconstructions such as a relative maximum of ocean cooling over the tropical Pacific associated with a mean La Niña-like response and lead to a more realistic SST pattern than in the slab model case. The reduction in global mean precipitation simulated in the coupled model is larger (15%) than that simulated with the slab ocean model (~10%) in conjunction with the enhanced cooling. Some regions, such as the USA and the Mediterranean region, experience increased precipitation in accord with proxy paleoclimate evidence. The overall much drier climate over the ocean leads to higher sea surface salinity (SSS) in most ocean basins except for the North Atlantic where SSS is considerably lower due to an increase in the supply of fresh water from the Mississippi and Amazon rivers and presumably a decrease in salt transport by the weakened North Atlantic overturning circulation. The North Atlantic overturning stream function weakens to less than half of the control run value. The overturning is limited to a shallower depth (less than 1000 m) and its outflow is confined to the Northern Hemisphere. In the Southern Ocean, convection is much stronger than in the control run leading to a stronger overturning stream function associated with enhanced Antarctic Bottom Water formation. As a result, Southern Ocean water masses fill the entire deep ocean. The Antarctic Circumpolar Current (ACC) transport through the Drake Passage increases by about 25%. The ACC transport, despite weaker zonal winds, is enhanced due to changes in bottom pressure torque. The weakening of the overturning circulation in the North Atlantic and the accompanying 30% decrease in the poleward ocean heat transport contrasts with the strengthening of the overturning circulation in the Southern Ocean and a 40% increase in heat transport. As a result, sea ice coverage and thickness are affected in opposite senses in the two hemispheres. The LGM climate simulated by the coupled model is in reasonable agreement with paleoclimate proxy evidence. The dynamical response of the ocean in the coupled model plays an important role in determining the simulated, and undoubtedly, the actual, LGM climate.  相似文献   

12.
 We present a method for constraining key properties of the climate system that are important for climate prediction (climate sensitivity and rate of heat penetration into the deep ocean) by comparing a model's response to known forcings over the twentieth century against climate observations for that period. We use the MIT 2D climate model in conjunction with results from the Hadley Centre's coupled atmosphere–ocean general circulation model (AOGCM) to determine these constraints. The MIT 2D model, which is a zonally averaged version of a 3D GCM, can accurately reproduce the global-mean transient response of coupled AOGCMs through appropriate choices of the climate sensitivity and the effective rate of diffusion of heat anomalies into the deep ocean. Vertical patterns of zonal mean temperature change through the troposphere and lower stratosphere also compare favorably with those generated by 3-D GCMs. We compare the height–latitude pattern of temperature changes as simulated by the MIT 2D model with observed changes, using optimal fingerprint detection statistics. Using a linear regression model as in Allen and Tett this approach yields an objective measure of model-observation goodness-of-fit (via the residual sum of squares weighted by differences expected due to internal variability). The MIT model permits one to systematically vary the model's climate sensitivity (by varying the strength of the cloud feedback) and rate of mixing of heat into the deep ocean and determine how the goodness-of-fit with observations depends on these factors. This provides an efficient framework for interpreting detection and attribution results in physical terms. With aerosol forcing set in the middle of the IPCC range, two sets of model parameters are rejected as being implausible when the model response is compared with observations. The first set corresponds to high climate sensitivity and slow heat uptake by the deep ocean. The second set corresponds to low sensitivities for all magnitudes of heat uptake. These results demonstrate that fingerprint patterns must be carefully chosen, if their detection is to reduce the uncertainty of physically important model parameters which affect projections of climate change. Received: 19 April 2000 / Accepted: 13 April 2001  相似文献   

13.
The sensitivity of the tropical climate to tidal mixing in the Indonesian Archipelago (IA) is investigated using a coupled general circulation model. It is shown that the introduction of tidal mixing considerably improves water masses properties in the IA, generating fresh and cold anomalies in the thermocline and salty and cold anomalies at the surface. The subsurface fresh anomalies are advected in the Indian Ocean thermocline and ultimately surface to freshen the western part of the basin whereas surface salty anomalies are advected in the Leuwin current to salt waters along the Australian coast. The ~0.5°C surface cooling in the IA reduces by 20% the overlying deep convection. This improves both the amount and structure of the rainfall and weakens the wind convergence over the IA, relaxes the equatorial Pacific trade winds and strengthens the winds along Java coast. These wind changes causes the thermocline to be deeper in the eastern equatorial Pacific and shallower in the eastern Indian Ocean. The El Nino Southern Oscillation (ENSO) amplitude is therefore slightly reduced while the Indian Ocean Dipole/Zonal Mode (IODZM) variability increases. IODZM precursors, related to ENSO events the preceding winter in this model, are also shown to be more efficient in promoting an IODZM thanks to an enhanced wind/thermocline coupling. Changes in the coupled system in response tidal mixing are as large as those found when closing the Indonesian Throughflow, emphasizing the key role of IA on the Indo-Pacific climate.  相似文献   

14.
A global ocean general circulation model (L30T63) is employed to study the uptake and distribution of anthropogenic CO2 in the ocean. A subgrid-scale mixing scheme called GM90 is used in the model. There are two main GM90 parameters including isopycnal diffusivity and skew (thickness) diffusivity. Sensitivities of the ocean circulation and the redistribution of dissolved anthropogenic CO2 to these two parameters are examined. Two runs estimate the global oceanic anthropogenic CO2 uptake to be 1.64 and 1.73 ...  相似文献   

15.
Abstract

A new coupled atmosphere‐ocean model has been developed for climate predictions at decade to century scales. The atmospheric model is similar to that of Hansen et al. (1983) except that the atmospheric dynamic equations for mass and momentum are solved using Arakawa and Lamb's (1977) C grid scheme and the advection of potential enthalpy and water vapour uses the linear upstream scheme (Russell and Lerner, 1981). The new global ocean model conserves mass, allows for divergent flow, has a free surface and uses the linear upstream scheme for the advection of potential enthalpy and salt. Both models run at 4° × 5° resolution, with 9 vertical layers for the atmosphere and 13 layers for the ocean. Twelve straits are included, allowing for subgrid‐scale water flow. Runoff from land is routed into appropriate ocean basins. Atmospheric and oceanic surface fluxes are of opposite sign and are applied synchronously. Flux adjustments are not used. Except for partial strength alternating binomial filters (Shapiro, 1970), which are applied to the momentum components in the atmosphere and oceans, there is no explicit horizontal diffusion.

A 120‐year simulation of the coupled model starting from the oceanic initial conditions of Levitus (1982) is discussed. The model dynamics stabilize after several decades. The maximum northward ocean heat flux is 1.4 × 1015 W at 16°N. The model appears to maintain the vertical gradients characterizing the separation between the upper and deep ocean spheres. Inadequacies in the coupled model simulation lead to decreasing temperature and salinity in the high latitude North Atlantic and to a poor simulation of the northern North Atlantic thermohaline circulation. The mass transport of the Gulf Stream is about half of observed values, while the transports of the Kuroshio and Antarctic Circumpolar Currents are similar to observations. Additional deficiencies include a climate drift in the surface air temperature of 0.006°C year‐1 due to a radiation imbalance of 7.4 Wm‐2 at the top of the atmosphere and too warm temperatures in the eastern portions of tropical oceans. The coupled model should be useful for delineating modelling capabilities without the use of flux adjustments and should serve as a benchmark for future model improvements.  相似文献   

16.
 A new simple, coupled climate model is presented and used to investigate the sensitivity of the thermohaline circulation and climate to ocean vertical and horizontal exchange. As formulated, the model highlights the role of thin, ocean surface layers in the communication between the atmosphere and the subsurface ocean. Model vertical exchange is considered to be an analogue to small-scale, diapycnal mixing and convection (when present) in the ocean. Model horizontal exchange is considered to be an analogue to the effects of the wind-driven circulation. For small vertical exchange in the ocean, the model exhibits only one steady-state solution: a relatively cold, mid-high-latitude climate associated with a weak, salinity-driven circulation (“off ” mode). For large vertical and horizontal exchange in the ocean, the model also exhibits only one steady-state solution: a relatively warm, mid-high-latitude climate associated with a strong, thermally-driven circulation (“on” mode). For sufficiently weak horizontal exchange but large enough vertical exchange, both modes are possible stable, steady-state solutions. When model parameters are calibrated to fit tracer distributions of the modern ocean-atmosphere system, only the “on” mode is possible in this standard case. This suggests that the wind-driven circulation in consort with diapycnal mixing suppresses the “off ” mode in the modern ocean-atmosphere system. Since both diapycnal mixing and the wind-driven circulation would be expected to increase in a cold climate with greater meridional temperature gradients and enhanced winds, vertical and horizontal exchange in the ocean are probably associated with strong negative feedbacks which tend to stabilize climate. These results point to the need to resolve ocean wind-driven circulation and to greatly improve the treatment of ocean diapycnal mixing in more complete models of the climate system. Received: 16 November 1999 / Accepted: 19 June 2000  相似文献   

17.
李伊吟  智海  林鹏飞  刘海龙  于溢 《大气科学》2018,42(6):1263-1272
海洋在气候变暖过程中的重要性通常用海洋热吸收来衡量,热吸收的大小影响全球变暖的幅度。本文利用FGOALS-g2、FGOALS-s2(以下分别缩写为g2、s2)两个耦合模式的CO2浓度以每年1%速率增长(1pctCO2)试验,评估和分析海洋热吸收与气候敏感度的关系。结果表明:进入海洋净热通量(s2模式大于g2模式)会使得s2模式的海洋热吸收总体比g2模式大;更为重要的是,由于s2模式中的海洋热吸收主要集中在上层,使得耦合模式s2中的瞬态气候响应(TCR,或称气候敏感度)比g2大。当CO2浓度加倍时,在两个耦合模式中,海洋热吸收的空间分布呈现显著性的差异,s2模式中上层热吸收明显比深层大,上层热吸收主要位于太平洋和印度洋,而g2模式中上层和深层热吸收差别较小,深层主要位于大西洋和北冰洋。进一步研究表明,海洋热吸收分布特征与两个耦合模式海洋环流变化有关。在g2模式中北大西洋经圈翻转环流(AMOC)强度强且深度大,在CO2浓度加倍时,AMOC减弱小,这样AMOC可将热量带到海洋的深层,增加海洋深层热吸收。而在s2模式中,平均AMOC弱且浅,在CO2浓度加倍时,AMOC减弱明显,热量不易到达深层,主要集中在海洋上层,对气候敏感度影响更快且更强。海洋环流导致热吸收及其空间差异同时影响到气候敏感度的差异。因此,探讨海洋热吸收与气候敏感度之间的关系,利于明确气候敏感度不确定性的来源。  相似文献   

18.
Variability of the Pacific Ocean is examined in numerical simulations with an ocean general circulation model forced by observed anomalies of surface heat flux, wind stress and turbulent kinetic energy (TKE) over the period 1970-88. The model captures the 1976-77 winter time climate shift in sea surface temperature, as well as its monthly, seasonal and longer term variability as evidenced in regional time series and empirical orthogonal function analyses. Examination of the surface mixed-layer heat budget reveals that the 1976-77 shift was caused by a unique concurrance of sustained heat flux input anomalies and very strong horizontal advection anomalies during a multi-month period preceding the shift in both the central Pacific region (where cooling occurred) and the California coastal region (where warming occurred). In the central Pacific, the warm conditions preceding and the cold conditions following the shift tend to be maintained by anomalous vertical mixing due to increases in the atmospheric momentum flux (TKE input) into the mixed layer (which deepens in the model after the shift) from the early 1970s to the late 1970s and 1980s. Since the ocean model does not contain feedback to the atmosphere and it succeeds in capturing the major features of the 1976-77 shift, it appears that the midlatitude part of the shift was driven by the atmosphere, although effects of midlatitude ocean-atmosphere feedback are still possible. The surface mixed-layer heat budget also reveals that, in the central Pacific, the effects of heat flux input and vertical mixing anomalies are comparable in amplitude while horizontal advection anomalies are roughly half that size. In the California coastal region, in contrast, where wind variability is much weaker than in the central Pacific, horizontal advection and vertical mixing effects on the mixed layer heat budget are only one-quarter the size of typical heat flux input anomalies.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil  相似文献   

19.
Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean–atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10–20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean’s thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.  相似文献   

20.
Latitudinal heat transport in the ocean and atmosphere represents a fundamental process of the Earth's climate system. The ocean component of heat transport is effected by the thermohaline circulation. Changes in this circulation, and hence latitudinal heat transport, would have a significant effect on global climate. Paleoclimate evidence from the Greenland ice cores and deep sea sediment cores suggests that during much of glacial time the climate system oscillated between two different states. Bimodal equilibrium states of the thermohaline circulation have been demonstrated in climate models. We address the question of the role of the atmospheric hydrological cycle on the global thermohaline circulation and the feedback to the climate system through changes in the ocean's latitudinal heat transport, with a simple coupled ocean-atmosphere energy-salt balance model. Two components of the atmospheric hydrological cycle, i.e., latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean appear to play separate roles. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation or a rapid transition between two different equilibria in the global thermohaline circulation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, the on mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The off mode has strong deep water production in the Southern Ocean and weak production in the North Pacific. Heat transport into the high latitude North Atlantic by the ocean is reduced to about 20% of the on mode value. For estimated values of water vapor transport for the present climate the model asserts that while water vapor transport from the Atlantic to the Pacific Ocean is sufficiently large to make the North Atlantic the dominant region for deep water production, latitudinal water vapor transport is sufficiently low that the thermohaline circulation appears stable, i.e., far from a bifurcation point. This conclusion is supported to some extent by the fact that the high latitude temperature of the atmosphere as recorded in the Greenland ice cores has changed little over the last 9000 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号