首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations of the dispersion of a contaminant plume in the atmospheric boundary layer, obtained using a Lidar, are analysed in the coordinate frame relative to the instantaneous centre of mass of the plume, as well as the absolute (or fixed) coordinate frame. The study extends the work presented in a previous article, which analysed the structure of the probability density function (pdf) of concentration within the relative coordinate frame. Firstly, the plume displacement component, or plume meander, is analysed and a simple parametric form for the pdf of the plume centreline position is suggested. This is then used to analyse the accuracy and applicability of absolute framework statistical quantities obtained by a convolution of the relative frame statistical quantity with the plume centreline pdf.  相似文献   

2.
3.
A simple analytical model is developed for the meanupcrossing rate of plume concentration fluctuations assuming that thisprocess can be well approximated by a lognormal process. The resultingexpression requires only the specification of the in-plume fluctuationintensity and in-plume Taylor micro-time scale and, hence, does notexplicitly involve the joint probability density function of theconcentration and its derivative. The analytical model provides agood fit to some field measurements of the mean upcrossing rate ina dispersing plume.  相似文献   

4.
Observations of 1-s average concentration fluctuations during two trials of a U.S. Army diffusion experiment are presented and compared with model predictions based on an exponential probability density function (pdf). The source is near the surface and concentration monitors are on lines about 30 to 100 m downwind of the source. The observed ratio of the standard deviation to the mean of the concentration fluctuations is about 1.3 on the mean plume axis and 4 to 5 on the mean plume edges. Plume intermittency (fraction of non-zero readings) is about 50%; on the mean plume axis and 10%; on the mean plume edges. A meandering plume model is combined with an exponential pdf assumption to produce predictions of the intermittency and the standard deviation of the concentration fluctuations that are within 20%; of the observations.  相似文献   

5.
The micromixing technique, widely used in engineering calculations of mixing and chemical reaction, is extended to atmospheric boundary-layer flows. In particular, a model based on the interaction-by-exchange-with-the-conditional-mean (IECM) micromixing approach is formulated to calculate concentration fluctuation statistics for a line source and a point source in inhomogeneous and non-Gaussian turbulence in the convective boundary layer. The mixing time scale is parameterised as a linear function of time with the intercept value determined by the source size at small times. Good agreement with laboratory data for the intensity of concentration fluctuations is obtained with a value of 0.9 for the coefficient of the linear term in the time-scale parameterisation for a line source, and a value of 0.6 for a point source. Calculation of higher-order moments of the concentration field for a line source shows that non-Gaussian effects persist into the vertically well-mixed region. The cumulative distribution function predicted by the model for a point source agrees reasonably well with laboratory data, especially in the far field. In the limit of zero mixing time scale, the model reduces to a meandering plume model, thus enabling the concentration variance to be partitioned into meandering and relative components. The meandering component is shown to be more persistent for a point source than for a line source.  相似文献   

6.
Intermittent concentration fluctuation time series were produced with a stochastic numerical model derived from the assumption that the concentration fluctuations at a fixed receptor in a point-source plume can be modelled as a first order Markov process. The time derivative of concentration was assumed to be level-dependent and constrained by a stationary lognormal probability density function. The input parameters required to reconstruct the intermittent time series are the intermittency factor , the conditional fluctuation intensity i p 2 , and the time scale T c . A clipped lognormal probability distribution was used to describe the fluctuation time series. Good agreement between the stochastic simulation and experimental water-channel data was demonstrated by comparing the time derivative of concentration and the upcrossing rates over a range of intermittency factors = 0.7 to 0.01 and fluctuation intensities i w 2 = 2.2 to 7.5.  相似文献   

7.
The higher-order correlation functions for the concentrationfluctuations arising from a two-point-source configuration have beencalculated analytically within the context of the phenomenology of afluctuating plume model (viz., a meandering plume model that explicitlyincorporates internal fluctuations). Explicit expressions for thesecond-, third-, and fourth-order correlationfunctions between the concentrationfluctuations produced by two point sources are given in terms of the sourceseparation d and the five physically based parameters that define thegeneralized fluctuating plume model: namely, the absolute plume dispersion,a, which determines the outer plume length scale; the relative plume dispersion, r, which determines the inner plume length scale; the fluctuation intensity, ir, in relative coordinates, which determines the internal concentration fluctuation level; the correlation coefficient, r,between the positions of the centroids of the two interfering plumes; and,the correlation coefficient, r*, between the concentration fluctuationsof the two plumes in relative coordinates, which determines the degree ofinternal mixing of the two scalars. Furthermore, the form of the totalconcentration probability density function arising from the interferenceproduced by two point sources is presented. Predictions for the second-ordercorrelation function, , and for the total concentration probabilitydensity function have been compared with some new experimental data fora two-point-source configuration in grid turbulence generated in awater-channel simulation. These results are in good agreement with the dataand suggest that the analytical model for the second-order correlationfunction and the total concentration probability density function canreproduce many qualitative trends in the interaction of plumes from twosources.  相似文献   

8.
Measurements have been made of concentration fluctuations in a dispersing plume from an elevated point source in the atmospheric surface layer using a recently developed fast-response photoionization detector. This detector, which has a frequency response (–6 dB point) of about 100 Hz, is shown to be capable of resolving the fluctuation variance contributed by the energetic subrange and most of the inertial-convective subrange, with a reduction in the fluctuation variance due to instrument smoothing of the finest scales present in the plume of at most 4%.Concentration time series have been analyzed to obtain the statistical characteristics of both the amplitude and temporal structure of the dispersing plume. We present alongwind and crosswind concentration fluctuation profiles of statistics of amplitude structure such as total and conditional fluctuation intensity, skewness and kurtosis, and of temporal structure such as intermittency factor, burst frequency, and mean burst persistence time. Comparisons of empirical concentration probability distributions with a number of model distributions show that our near-neutral data are best represented by the lognormal distribution at shorter ranges, where both plume meandering and fine-scale in-plume mixing are equally important (turbulent-convective regime), and by the gamma distribution at longer ranges, where internal structure or spottiness is becoming dominant (turbulent-diffusive regime). The gamma distribution provides the best model of the concentration pdf over all downwind fetches for data measured under stable stratification. A physical model is developed to explain the mechanism-induced probabilistic schemes in the alongwind development of a dispersing plume, that lead to the observed probability distributions of concentration. Probability distributions of concentration burst length and burst return period have been extracted and are shown to be modelled well with a powerlaw distribution. Power spectra of concentration fluctuations are presented. These spectra exhibit a significant inertial-convective subrange, with the frequency at the spectral peak decreasing with increasing downwind fetch. The Kolmogorov constant for the inertial-convective subrange has been determined from the measured spectra to be 0.17±0.03.  相似文献   

9.
Observations of the dispersion of a contaminant plume in theatmospheric boundary layer, obtained using a Lidar, are analysedin a coordinate frame relative to the instantaneous centre of massof the plume. To improve the estimates of relative dispersionstatistics, maximum entropy inversion is used to remove noise fromthe Lidar concentration profiles before carrying out the analysis.A parametric form is proposed for the probability density function(pdf) of concentration, consisting of a mixture of a betadistribution and of a generalised Pareto distribution (GPD). Thispdf allows for the possibility of a unimodal or bimodaldistribution, and is shown to give a satisfactory fit toobservations from a range of positions relative to the source. Thevariation of the fitted parameters with crossplume location isanalysed, and the maximum possible concentration is found todecrease away from the plume centre.  相似文献   

10.
This paper presents a new model of concentration fluctuations for neutrally buoyant gas clouds dispersing in a wind tunnel. It is derived from a series of exact results, which apply in the hypothetical case when there is no molecular diffusion, coupled with a probability density function model previously used to describe steady releases of contaminant. A simple self-similar relationship between the evolution of the concentration intensity and mean is established. As a first step the time independent variant of the model, applicable to a continuous plume, is tested against some previously published experimental data for steady wind-tunnel releases. Comparisons of experimental results and model predictions at different downwind positions, heights and source geometry are presented. Then, the results for the time dependent model, applicable to instantaneous releases, are discussed. The experimental evidence presented here supports the self-similar relationship established earlier. The implications for modelling higher moments of concentration and the fixed point probability density function are investigated.  相似文献   

11.
Fluctuating plume models provide a useful conceptual paradigm in the understanding of plume dispersion in a turbulent flow. In particular, these models have enabled analytical predictions of higher-order concentration moments, and the form of the one-point concentration probability density function (PDF). In this paper, we extend the traditional formalism of these models, grounded in the theory of homogeneous and isotropic turbulent flow, to two cases: namely, a simple sheared boundary layer and a large array of regular obstacles. Some very high-resolution measurements of plume dispersion in a water channel, obtained using laser-induced fluorescence (LIF) line-scan techniques are utilised. These data enable us to extract time series of plume centroid position (plume meander) and dispersion in the relative frame of reference in unprecedented detail. Consequently, experimentally extracted PDFs are able to be directly compared with various theoretical forms proposed in the literature. This includes the PDF of plume centroid motion, the PDF of concentration in the relative frame, and a variety of concentration moments in the absolute and relative frames of reference. The analysis confirms the accuracy of some previously proposed functional forms of model components used in fluctuating plume models, as well as suggesting some new forms necessary to deal with the complex boundary conditions in the spatial domain.  相似文献   

12.
Concentration probability density functions (pdfs) calculated according to fluctuating plume models in one- and two-dimensions, representing the limiting cases of one-dimensional dispersion from a line source or a point source in strongly anisotropic turbulence and of axisymmetric dispersion from a point source in isotropic turbulence, are discussed and analyzed in terms of the location of the sampling point within the mean plume and of the ratio, s/m, of the standard deviations for relative dispersion and meandering.In both cases, the pdfs cover the finite concentration range from zero to C 0, the centreline concentration of the instantaneous plume. The main difference between them is that whereas the 2-D pdf is always unimodal, the 1-D pdf has a singularity at C 0 which under some circumstances results in a bimodal form. However, the probability associated with this singularity is not always significant. Differences of practical importance in the shape of the pdfs occur mainly for centreline or near-centreline sampling locations when meandering is not too much larger than relative dispersion (1 < m 2/s2 < 10) and for sampling locations a distance of order s from the centreline when relative dispersion is not too much larger than meandering (1 < s 2/m2 < 5).Comparison against wind tunnel measurements not too far downstream of a line source in grid turbulence shows that the 1-D model reproduces the essential features and trends of the measurements. Under appropriate circumstances the measurements show the bimodal pdf predicted by the 1-D model (but not by the 2-D model) confirming that the effect of the anisotropy in the source distribution is observable.Present address: School of Mechanical Engineering, Aristotle University, Thessaloniki, 54006 Thessaloniki, Greece.  相似文献   

13.
The knowledge of the concentration probability density function (pdf) is of importance in a number of practical applications, and a Lagrangian stochastic (LS) pdf model has been developed to predict statistics and concentration pdf generated by continuous releases of non-reactive and reactive substances in canopy generated turbulence. Turbulent dispersion is modelled using a LS model including the effects of wind shear and along-wind turbulence. The dissipation of concentration fluctuations associated with turbulence and molecular diffusivity is simulated by an Interaction by Exchange with the Conditional Mean (IECM) micromixing model. A general procedure to obtain the micromixing time scale needed in the IECM model useful in non-homogeneous conditions and for single and multiple scalar sources has been developed. An efficient algorithm based on a nested grid approach with particle splitting, merging techniques and time averaging has been used, thus allowing the calculation for cases of practical interest. The model has been tested against wind-tunnel experiments of single line and multiple line releases in a canopy layer. The approach accounted for chemical reactions in a straightforward manner with no closure assumptions, but here the validation is limited to non-reacting scalars.  相似文献   

14.
Results are presented from an experimental investigation of turbulent dispersion of a saline plume of large Schmidt number (Sc=830) in a turbulent boundary-layer shear flow simulated in a laboratory water channel. The dispersion measurements are obtained in a neutrally buoyant plume from an elevated point source over a range of downstream distances, where both plume meandering and fine-structure variations in the instantaneous plume are important. High-resolution measurements of the scalar fluctuations in the plume are made with a rake of conductivity probes from which probability distributions of concentration at various points throught the plume are extracted from the time series.Seven candidate probability distributions were tested, namely, the exponential, lognormal, clipped normal, gamma, Weibull, conjugate beta, andK-distributions. Using the measured values of the conditional mean concentration, , and the conditional fluctuation intensity,i p , the Weibull distribution provided the best match to the skewness and kurtosis over all downstream fetches. The skewness and kurtosis were always overpredicted by the lognormal probability density function (pdf), and underpredicted by the gamma pdf. The conjugate beta distribution for which the model parameters are determined using a method of moments based on the fluctuation intensity,i p , and skewness,S p , was capable of modeling the distribution of scalar concentration over a wide range of positions in the plume.  相似文献   

15.
Measurements of concentration fluctuation intensity, intermittency factor, and integral time scale were made in a water channel for a plume dispersing in a well-developed, rough surface, neutrally stable, boundary layer, and in grid-generated turbulence with no mean velocity shear. The water-channel simulations apply to full-scale atmospheric plumes with very short averaging times, on the order of 1–4 min, because plume meandering was suppressed by the water-channel side walls. High spatial and temporal resolution vertical and crosswind profiles of fluctuations in the plume were obtained using a linescan camera laser-induced dye tracer fluorescence technique. A semi-empirical algebraic mean velocity shear history model was developed to predict these concentration statistics. This shear history concentration fluctuation model requires only a minimal set of parameters to be known: atmospheric stability, surface roughness, vertical velocity profile, and vertical and crosswind plume spreads. The universal shear history parameter used was the mean velocity shear normalized by surface friction velocity, plume travel time, and local mean wind speed. The reference height at which this non-dimensional shear history was calculated was important, because both the source and the receptor positions influence the history of particles passing through the receptor position.  相似文献   

16.
A meandering plume model that explicitly incorporatesinternal fluctuations has been developed and used to model the evolutionof concentration fluctuations in point-source plumes in grid turbulenceobtained from a detailed water-channel simulation. This fluctuating plumemodel includes three physical parameters: the mean plume spread in fixedcoordinates, which represents the outer plume length scale; the meaninstantaneous plume spread in coordinates attached to the instantaneousplume centroid, which represents the inner plume length scale; and, theconcentration fluctuation intensity in the meandering reference frame,which represents the in-plume fluctuation scale. These parameters arespecified in terms of a set of coupled dynamical equations that modeltheir development with downstream distance from the source. Explicitexpressions for the concentration moments of arbitrary integral orderand the concentration probability density function have been obtainedfrom the fluctuating plume model. Detailed comparisons of model predictionsagainst water-channel measurements for the first four concentrationmoments and the concentration probability distributions generally showvery good overall quantitative agreement. Exact quantitative conditions,expressed in terms of the physical parameters of the fluctuating plumemodel, have been derived for the emergence of off-centreline peaks inthe concentration variance profile. These quantitative conditions havebeen illustrated in terms of a diagram of states of the dispersing plume,and the qualitatively different regimes of plume concentration variancebehaviour on this state diagram have been identified and characterized.  相似文献   

17.
This study examines the statistical properties of the concentration derivative, , for a dispersing plume in a near-neutrally stratified atmospheric surface layer. Towards this goal, the probability density function (pdf) of , and the conditional pdf of given a fixed concentration level, , have been measured. These pdfs are found to be modeled well by a generalizedq-Gaussian (gqG) distribution with intermittency exponent,q, equal to 0.3 and 3/4, respectively. These results highlight the strong intermittency effect (patchiness) of the small-scale concentration eddy structures in the plume. The distribution of time intervals between successive high peaks in the squared derivative process, x2, is found to be well approximated by a power-law distribution, implying that occurrences of these high peaks are much more clustered than would be predicted by a Poisson or shot-noise process. The results are used to improve models for the joint pdf of and , and for the expected number of upcrossings per unit time interval of a fixed concentration level that have been proposed by Kristensenet al. (1989). The predictions of the improved models are in accord with observations, and suggest that the intercorrelation between and must be explicitly incorporated if good estimates of the upcrossing intensity are to be obtained.  相似文献   

18.
A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness.  相似文献   

19.
The dynamical characteristics of concentration fluctuations in a dispersing plume over the energetic and inertial-convective range of scales of turbulent motion are studied using a multiscale analysis technique that is based on an orthonormal wavelet representation. It is shown that the Haar wavelet concentration spectrum is similar to the Fourier concentration spectrum in that both spectra exhibit an extensive inertial-convective subrange spanning about two decades in frequency, with a scaling exponent of -5/3. Analysis of the statistical properties (e.g., fluctuation intensity, skewness, and kurtosis) of the concentration wavelet coefficients (i.e., the concentration discrete detailed signal) suggests that the small scales are always more intermittent than the large scales. The degree of intermittency increases monotonically with decreasing scale within the inertial-convective subrange, reaching a plateau at the very small scales associated with the beginning of the near-dissipation subrange. The probability density function (pdf) of the concentration discrete detailed signal displays stretched exponential tails with an intermittency exponent (tail slope) q that increases as a , where is the scale or dilation and a is a power-law exponent that is dependent on downwind distance, plume height, and stratification strength with typical values in the range from about 0.25 to 0.35. It is shown that the concentration variance cascade process requires a phase coherency of eddies between different scales at the small-scale end of the inertial-convective subrange.The variation of the concentration wavelet statistics with height above the ground is investigated. The increased mean shear near the ground smooths the fine-scale plume structure for scales within the inertial-convective subrange, producing a weaker spatiotemporal intermittency in the concentration field compared to that measured higher up in the plume. The pdf of the concentration detailed signal at a fixed scale possesses less elongated tails with decreasing height z. The intermittency exponent q is found to decrease roughly linearly with increasing z.Finally, the results of the wavelet decomposition are combined to provide a conceptual model of the turbulent transport, stirring, and mixing regimes in a dispersing plume. The implications of the results for contaminant texture in a plume are discussed.  相似文献   

20.
A steady-state, three-dimensional turbulent diffusion equation describing the concentration distribution of an air pollutant from an elevated point source in the lower atmosphere is solved analytically. The same formulation can be used to obtain solutions from line, area or other kinds of sources. The solution is developed for the cases in which the velocity, vertical and lateral diffusivities are given by the power law. The model preserves the beauty of analytical solution without sacrificing much on the accuracy of approximating the velocity and eddy diffusivities. Methods of evaluating the parameters, which are required for the model applications, are discussed. Results indicate that the ratio of the plume width to the plume length increases with decreasing stability and with increasing source height. These consequences are in response to the variations of the size of eddies in the vertical direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号