首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 221 毫秒
1.
梅雨锋上两类中尺度对流系统形成的边界层特征   总被引:3,自引:0,他引:3  
采用具有较高时空分辨率的地面观测资料以及WRF(Weather reasearch and forecasting)模式输出资料,分析了2009年6月29一-30日梅雨锋暴雨过程中两类不同的中尺度对流系统(rnesoscale convective system,MCS)边界层特征及边界层对两类MCS的触发维持机理,重点分析了海平面气压场特征、边界层冷池、干线及其在MCS中的影响。结果表明:两类中尺度对流系统的海平面气压特征存在着明显的差异,对流爆发阶段地面风场存在辐合线,再次激发阶段气压场呈“跷跷板”型的中尺度扰动,即由前置中低压和后置中高压组成,最强的对流带位于中低压和中高压之间的过渡区内;边界层辐合线是第一类中尺度对流系统(MCSl)维持的重要因素;MCSl爆发后边界层冷池生成,冷池前的冷出流与低层环境风产生的强辐合触发了第二类中尺度对流系统(MCS2);存在于中低压和中高压之间的中尺度干线是MCS2的重要特点之一。  相似文献   

2.
对1998年华南暴雨试验加密观测期间(IOP)5月23日强降水个例的数值模拟结果分析指出,锋面对于中尺度对流系统而言除了提供对流运动的触发机制外,两者之间还可能存在复杂的相互作用。华南前汛期中伴随对流活动的冷锋具有独特的垂直环流结构。它主要表现为暖湿气流不是沿锋面上滑,而是在冷锋前沿的对流雨团中直接上升到高空,锋面上方上滑的暖空气完全被对流雨团北侧的补偿性下沉气流所代替;而在锋后以及锋前暖区内均有对流活动发生的情况下,低空流入锋区前沿和锋区上方雨团的空气不是来自锋前暖区,而是来自锋后。对对流系统内部雨团进行的三维轨迹追踪也揭示出锋面上空对流雨团内存在一部分来自锋后并穿越锋区的上升气流。这是因为锋面并不是真正意义上的物质面,它只是大气温、湿属性有显著差别的界面,因此存在穿越锋区的运动并不是完全不可能发生的。在华南前汛期中,锋区两侧温度对比比通常意义上的锋面要小,这也是可能发生穿越锋面运动的原因之一,表明中尺度对流系统由于具有与梅雨锋在跨锋方向相类似的尺度而有可能对梅雨锋的流场结构发生影响。  相似文献   

3.
2018年5月7日华南地区受锋面中尺度对流系统和暖区对流系统影响,出现多条中尺度雨带。其中锋面对流系统形成降雨区范围较广,雨量分布不均;在锋前30~200 km暖区内,多个离散的短生命史β中尺度对流系统形成范围较小的中尺度雨带;而在华南沿海地区中尺度线状对流长度超过300 km,稳定维持时间超过12 h,形成局地300 mm以上的沿海强降雨带。雷达回波分析表明华南地区的锋面对流系统、暖区对流系统均以低质心型对流单体为主,其中锋面对流单体35 dBz回波顶高平均为5.5 km,暖区对流系统35 dBz回波顶高平均为4.7 km。利用ERA5再分析资料诊断降水效率表明,锋面系统降水效率平均在10%~15%,暖区对流系统的降水效率波动明显,瞬时降水效率可超过90%。此次降雨过程中雨滴谱分析表明,小粒子直径、高雨滴数密度的暖云降水特征突出,沿海暖区对流系统在各个降水强度量级上都具有更大的粒子直径和数浓度,因此降水效率较高。预报检验表明主流业务数值模式对于暖区对流性降水预报能力有限,欧洲中心再预报改善了暖区对流性降水离散度分布,中尺度区域数值模式能够反映锋面对流和暖区对流的基本特征,但在沿海暖区对流系统的强度、组织上仍然有偏差。比较锋面降水和暖区降水的集合预报敏感性表明,锋面降水对于锋前低压槽、低空急流等天气系统强迫具有较高预报敏感性,而沿海暖区降水对于上游入流区不稳定能量分布具有更显著的敏感性。  相似文献   

4.
利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP再分析资料,对桂林2019年6月6-12日接连3次强降水天气过程的环流背景、影响系统与形成原因进行了对比分析。结果表明:(1)3次过程按影响系统分属暖区暴雨、低涡暴雨和锋面暴雨过程,均发生在高空急流右侧辐散、低空急流左侧辐合叠加区。(2)3次过程均受500 hPa短波槽和地面中尺度辐合线影响,但第1次过程中西南急流及地形等、第2次过程中低涡切变线、第3次过程中冷锋也起到重要作用。(3)3次过程的触发系统不同,第1次暖区暴雨过程迎风坡地形对其起触发作用,西南急流使得后向传播的对流云带维持;第2次低涡暴雨过程的触发系统为低层位于贵州一带的西南涡,西部冷空气侵入与西南急流加强是低涡对流云团维持较长时间的原因;第3次锋面暴雨的触发系统为冷锋,锋面配合锋前暖湿气流使对流云带加强。(4)第1次过程暖区暴雨MCS模态主要为线状后向扩建类,极端强降水出现在线对流中后端;第2次过程低涡暴雨MCS模态为涡旋类,极端强降水出现在涡旋中心附近;第3次过程锋面暴雨MCS模态由前期后部层云区线状对流转为层状云包裹对流系统,强降水发生在线对流弯曲或中心强回波处。  相似文献   

5.
徐珺  谌芸  张庆红 《气象学报》2023,(4):531-546
2018年4月21日华北南部发生了一次主观预报量级偏小的大范围春季暴雨,利用多种高时空分辨率观测资料、欧洲中期天气预报中心第5代大气再分析数据以及高分辨率数值模拟,对引发暴雨的大尺度和中尺度天气过程以及造成暴雨的中尺度对流系统的演变过程进行研究。发现后门冷锋是造成该次暴雨的大尺度天气系统。受太行山脉影响,锋面由西段南北方向和东段东西方向的两段组成,冷空气集中于1.5 km以下,伴随锋面后部东北风的增强,锋面南移、太行山东侧冷空气堆增高、强度增大;暴雨由与锋面有关的中尺度对流系统造成,中尺度对流系统形成和维持发生于后门冷锋附近且伴随锋生过程,位于沿后门冷锋爬升的暖空气前部水平风速辐合中心,其快速发展和对流中心的南移伴随锋面后部东北风增强所带来的锋面南移、冷空气堆增高;基于高分辨率数值模拟的动量收支计算表明,有利于中尺度对流系统中对流中心产生的上升运动主要由垂直气压梯度力和浮力项的合力项贡献,该合力项的大值区分布于沿锋面爬升的暖湿气流前沿具有较大的水平相当位温梯度区附近,这解释了伴随锋面增强南移的中尺度对流系统发展、对流中心南移这一现象。以上结果揭示了导致华北春季暴雨的这次后门冷锋和中尺度...  相似文献   

6.
利用常规天气资料及地面自动站、风廓线雷达、新一代天气雷达资料和ERA-Interim逐6 h 0.125°×0.125°再分析资料,分析2015年5月19日福建西部山区一次极端降水的中尺度特征。结果表明:(1)极端降水分为锋前暖区降水和锋面降水两个阶段,暴雨区位于低空西南急流轴左侧,水汽充足,冷暖空气交汇,不稳定能量大,抬升凝结高度和自由对流高度低,大气可降水量大及中等强度的垂直风切变形成有利于中尺度对流系统(mesoscale covective system, MCS)发展的环境条件。(2)锋前暖区降水期间,西南气流携带高能量和水汽充足的空气移入暴雨区被中尺度边界附近的冷出流空气抬升,不断产生新的对流单体,对流单体向东北偏东方向移动,排列形成短雨带;若干条东北—西南向长度不等的短雨带在中尺度出流边界北侧建立,缓慢向东移动,依次重复影响关键区;暴雨关键区存在辐合线和风速辐合,为降水提供了良好的动力抬升条件;向西南开口的河谷地形加强了对流的发展;对流单体不断后部建立和东北西南向多个短雨带重复影响同一地区的列车效应是此阶段MCS主要发展方式。(3)锋面降水期间,对流单体在低涡切变南侧风速辐合、水汽和能量大值区发展东移南压,中高层先于低层转偏北气流,表现出前倾特征,垂直风切变加大,冷空气从中高层先扩散南下,与低层暖湿空气交汇使对流加强,冷暖气流的交汇叠加风速辐合使得强降水加强并维持。对流单体后向传播向东移动产生的列车效应是此阶段MCS主要发展方式。  相似文献   

7.
张晓惠  倪允琪 《气象学报》2009,67(1):108-121
在2005年6月20日的一次华南暴雨过程中,影响两广地区局地强降水的两个主要的中尺度对流系统(MCS)在性质上有很大不同,初步分析断定,影响广西局地强降水的MCS1为锋面云团,而影响广东局地强降水的MCS2为暖性云团.通过对二者进行对流强度、维持机制以及湿位涡结构的比较分析发现,锋面对流系统MCS1与暖区对流系统MCS2的对流上升速度都很大.引起的局地降水量也相差不多.由于二者存在水汽条件的差异,因此不能排除微小差异主要足由水汽条件直接导致的,无法就此得出它们的对流强度强弱的比较结果;同时,对二者成熟阶段维持机制的对比分析得到,具有锋面特征的MCS1,中高层有很强的偏北气流进入,在对流区是以对流对称不稳定机制来维持对流运动的;而具有非锋面结构的MCS2由于没有偏北气流的进入,加上水汽条件充沛,主要由湿对流不稳定机制来维持对流运动.另外,湿位涡(MPV)结构的对比分析中得到如F结论:在VMP的结构上,二者均表现出中低层潜在对称不稳定结构特征;在VMP1的结构上,锋面对流系统MCS1表现出南北气流相瓦作用的特征,而暖区对流系统MCS2表现出高低空气流相互作用的特征;最后,在VMP2的结构上,MCS1反映了对流区南北两侧高低空急流的作用,而MCS2则反映了对流区内中高层干冷空气下滑的作用.  相似文献   

8.
经向切变线暴雨落区分析   总被引:1,自引:1,他引:0  
孙兴池  吴炜  周雪松  郭俊建  姜鹏 《气象》2013,39(7):832-841
应用常规观测资料、NCEP 1°×1°再分析资料,对有静止锋和无锋面的两类经向切变线的暴雨落区从地面形势、高低空系统配置及冷暖空气的相互作用等方面进行精细分析,补充完善低涡、切变线类天气系统暴雨落区位于低涡东南象限的一般概念模型,以满足精细化预报的需求.结果表明:有地面静止锋配合和无锋面的两类经向切变线,在空间结构上有显著差异.由于有静止锋配合的切变线系统具有锋面结构,锋面抬升作用显著,暴雨的第一落区位于地面倒槽顶端;其次,由于冷暖空气相互作用阶段不同,在地面中尺度气旋发展成熟阶段,由于干空气侵入暖湿输送带上空,在静止锋前暖区中,出现暴雨第二落区.在无锋面配合的经向切变线过程中,地面不存在南北风交替的锋面系统,除了低涡东南象限较强的水汽辐合造成的暴雨区,850 hPaθe高值区、高比湿舌和弱水汽辐合重合的区域,由于潜在对流不稳定造成另一个暴雨区,且不需低空急流存在.  相似文献   

9.
2005年6月17~24日,华南地区发生了连续多日的暴雨天气过程,其显著特征是存在着南北两条雨带,北支雨带(福建中北部)由准静止的梅雨锋造成,南支雨带(广东中东部)发生在锋前暖区之中,这种连续多日共存的双雨带现象引起了气象学家的广泛关注.为了探究锋面和锋前暖区暴雨的成因,加深这两类不同性质暴雨的认识,利用NCEP每6 h一次的1°×1°经纬度再分析资料以及华南地区加密观测的逐小时地面降水等资料,以此次连续多日维持的双雨带降水过程为例,详细分析了锋面附近与锋前暖湿区内暴雨系统的主要物理差异.结果发现:梅雨锋暴雨和锋前暖区暴雨不仅在中尺度雨团活动、系统动力结构、大气不稳定机制和大气加热结构等存在明显的差异,而且在水汽输送、中尺度环境以及与暴雨有关的垂直环流之间也存在着不同点,这些差异可能是造成锋前暖区暴雨难以模拟和预报的主要原因.  相似文献   

10.
两次不同类型暖区暴雨的对比分析   总被引:1,自引:0,他引:1  
2014年5月8-12日,华南发生了连续暴雨天气过程,为了探究回流暖区暴雨和锋前暖区暴雨的成因,加深这两类不同类型暴雨的认识,利用NCEP/,NCAR的1°×1°再分析资料、多普勒天气雷达、风廓线仪、自动站资料等,分析了回流暴雨与锋前暖区暴雨的特征及主要物理差异。得出:(1)8日暴雨发生在变性高压脊后部,未受冷空气影响,属于回流型暖区暴雨过程,10-11日暴雨发生在锋面低槽中,属于锋前型暖区暴雨。(2)两种类型暴雨不仅降水的分布、中尺度云团活动、雷达特征等存在明显的差异,而且在天气形势、水汽输送、动力机制、中尺度环境条件以及与暴雨的触发机制存在着不同点,这些差异可能是造成两类暖区暴雨降水落区及量级差异的主要原因。  相似文献   

11.
利用2013—2017年6—8月FY-2E和FY-2G地球静止卫星相当黑体温度(Black Body Temperature,TBB)资料、NCEP/NCAR再分析资料,对我国夏季东北冷涡下东北地区MCS的分布和活动特征进行了统计分析,结果表明:(1) MCS的活动具有明显的月际变化和日变化特征,6月对流活动最活跃。MCS的主要移向是东、东北和东南,平均移动距离3.99个经纬距。(2) MCS成熟时刻的面积、偏心率和生命史均小于江淮地区以及中国中东部,云顶高度低于江淮地区,整个生命史表现出发展快消亡慢的特征,与江淮地区相反。(3)基于MCS的定义得到的Z标准,对2016—2017年的MCS作了统计分析并与J标准统计得到的MCS进行对比,得出,两种定义下的MCS环境场特征基本一致,主要表现为MCS多生成于500 hPa槽前和槽后,对流层高层MCS位于双急流之间靠近北支急流的辐散区,南侧急流高度在200 hPa,北侧的急流高度在250 hPa。低层,位于低空急流左侧,低涡南侧、东南侧,有较强的水汽和动量输送。槽前生成的MCS南侧中层存在垂直反环流向MCS输送干暖空气与位涡,槽后生成的MCS两侧均有大值位涡向其输送,同时北侧冷干空气的输送使锋区及上升运动加强,更有利于MCS的形成。(4)两种标准下的MCS造成的降水明显不同,在统计强降水方面Z标准要优于J标准。由于Z标准空间与时间尺度较小,统计得到的MCS较多;但同时会遗漏部分相对弱的MCS。  相似文献   

12.
崔春光  王晓芳  付志康 《气象》2013,39(5):556-566
用多种加密观测资料和NCEP日再分析资料分析了2010年7月14日强降水期间咸宁地区一次非线状MCS活动造成短时强降水的发生发展机制.结果表明,14日13-18时非线状MCS回波结构组织性差,强对流单体散乱地分布在大片层状回波中,准静止地维持在湖北咸宁地区大约5h,造成了短时强降水.该MCS发生在梅雨锋锋面附近的地面涡旋环流中,高空冷空气侵入和锋前抬升运动是对流的主要触发机制,切变线南侧不稳定的暖湿气流在长江中游地区辐合集中、局地的地面气流辐合和边界层有利的风切变是该非线状MCS发展维持在成宁地区的有利条件.高时空分辨率探测资料对MCS演变过程有较好的分析能力.  相似文献   

13.
基于Himawari-8卫星资料、雷达监测资料、区域自动站和常规观测资料及ERA-Interim再分析资料,对2016年6月5日河南省大范围强对流天气的环流背景、触发条件及对流系统演变特征进行了研究。结果表明:华北冷涡背景下,高空冷平流配合低层暖脊发展、对流有效位能值激增,为中尺度对流系统发展提供了不稳定条件,地面辐合线、冷池是触发机制。河南省西南部位于高能区、不同温湿性质气团交绥区,中高层干冷空气侵入、中层以下干绝热递减率为风雹天气提供了可能;河南省中部、河南省南部位于大气可降水量大值区,深厚的湿层、较低的抬升凝结高度有利于产生强降水。高层辐散、低层辐合的抽吸作用导致豫西南上升运动强盛,雷暴高压产生的变压风增强了动力抬升,中小尺度动力辐合促使强对流回波发展。风雹天气产生于中尺度对流系统前侧云顶亮温梯度大值区,强降水出现在云顶亮温低值中心附近。雷达产品分析表明,强回波悬垂、三体散射与快速移动的弓形回波、阵风锋和后侧入流急流对提前预警冰雹、雷暴大风有很好的指示意义。925 hPa 12 h显著增温区、对流有效位能高值区和冷池出流与暖空气交绥区是强对流发展的潜势区,湿球温度0℃层高度与冰雹关系密切。  相似文献   

14.
A 3-year climatology of isolated warm season mesoscale convective systems (MCSs) was built for the Mediterranean basin using Meteosat Second Generation infrared imagery and an objective identification and tracking algorithm. A dataset of 4,718 MCS trajectories was constructed for the warm season of the period 2005–2007, which in turn was split into two subsets (deep and weak convective) according to the intensity of convection using a discriminant parameter in the MCS properties. Several parameters related to geographical, temporal, radiative, morphological, and motion related properties were calculated for each MCS. The majority of MCSs are mainly continental and strongly correlated with orography showing an increased formation from April to June when maximum is found. Initiation and dissipation time revealed a distinct diurnal cycle having a strong correlation with the typical diurnal heating cycle of the atmosphere. On average, a typical isolated MCS in the Mediterranean basin initiates between 14:00 and 17:00 local solar time, tends to be small with elongated shape, short-lived, usually moving toward northeast to southeast with a mean velocity of 36 km/h. When comparing the two MCS subsets, some notable differences were revealed. Weak convective MCSs initiate earlier, move faster, travel longer, tend to reach slightly smaller sizes, are more linear, present higher cloud top temperatures, and have lower fractions of convective cloud type areas than deep convective systems.  相似文献   

15.
Mesoscale convective systems (MCSs) are severe disaster-producing weather systems. Radar data and infrared satellite image are useful tools in MCS surveillance. The previous method of MCS census is to look through the printed infrared imagery manually. This method is not only subjective and inaccurate, but also inefficient. Different from previous studies, a new automatic MCS identification (AMI) method, which overcomes the above disadvantages, is used in the present study. The AMI method takes three steps: searching potential MCS profiles, tracking the MCS, and assessing the MCS, so as to capture MCSs from infrared satellite images. Finally, 47468 MCSs are identified over Asia and the western Pacific region during the warm seasons (May-October) from 1995 to 2008. From this database, the geographical distribution and diurnal variation of MCSs are analyzed. The results show that different types of MCSs have similar geographical distributions. Latitude is the main control factor for MCS distribution. MCSs are most frequent over the central Tibetan Plateau; meanwhile, this area also has the highest hail frequency according to previous studies. Further, it is found that the diurnal variation of MCSs has little to do with MCSs’ size or shape; MCSs in different areas have their own particular diurnal variation patterns. Based on the diurnal variation characteristics, MCSs are classified into four categories: the whole-day occurring MCSs in low latitude, the whole-day occurring MCSs in high latitude, the nocturnal MCSs, and the postmeridian MCSs. MCSs over most places of mainland China are postmeridian; but MCSs over the Sichuan basin and its vicinity are nocturnal. This conclusion is coincidental with the hail climatology of China.  相似文献   

16.
利用雷达、卫星、风廓线雷达和地面加密区域自动气象站等观测资料,分析了2016年入梅后发生在鄂东地区一次极端强降水事件的中尺度对流系统发生发展过程、结构演变及其传播特征,旨在揭示造成强降水过程中的3个中尺度对流系统(MCS)的触发、发展、维持机理以及它们之间内在的中尺度动力学关系,尤其是地形作用下的低空急流的演变与强降水对流风暴系统相互作用过程。研究表明:(1)与大多数梅雨锋上的强降水带与低空切变线平行分布不同,此次极端强降水雨带呈倾斜的“n”字形,其中两条主雨带近乎与低空切变线垂直;此次极端强降水分别由大别山迎风坡上西北—东南向MCS、湖北中东部平原地区西北—东南向MCS和桐柏—大洪山东侧东北—西南向MCS造成。3个MCS移动缓慢,都具有后向传播的特征。(2)大别山迎风坡上MCS初始雷暴是低空急流下边界不断向下扩展过程中在地形抬升作用下触发的,而湖北中东部平原地区的MCS和桐柏—大洪山东侧MCS的触发、发展、加强都与大别山迎风坡上MCS形成的冷池加速推进形成的出流边界与环境气流形成的强烈辐合抬升作用有关。(3)垂直于大别山的边界层西南急流对山坡上的对流冷池产生的顶托作用不仅平衡了冷池密度流产生的向下作用力,而且进一步强化了山区的辐合抬升强度,使得大别山迎风坡上强降水风暴系统得以长时间维持和发展;当山坡上的对流冷池堆积到足够厚度,或者由于低空急流的下边界迅速抬升时,这种平衡被打破,大范围的冷池俯冲下山并在平原地区快速推进,造成了湖北中东部平原地区大范围的雷暴大风和MCS发展加强,并沿冷池前沿逐步组织化,形成平原地区东南—西北向的强降水带。   相似文献   

17.
Central East China is an area where both intense hourly precipitation(IHP) events and mesoscale convection systems(MCSs) occur frequently in the warm seasons. Based on mosaics of composite Doppler radar reflectivity and hourly precipitation data during the warm seasons(May to September) from 1 July 2007 to 30 June 2011, the contribution of MCSs to IHP events exceeding 20 mm h~(-1) over central East China was evaluated. An MCS was defined as a continuous or quasicontinuous band of 40d BZ reflectivity that extended for at least 100 km in at least one direction and lasted for at least 3h. It was found that the contribution of MCSs to IHP events was 45% on average over central East China. The largest contribution,more than 80%, was observed along the lower reaches of the Yellow River and in the Yangtze River–Huaihe River valleys.These regions were the source regions of MCSs, or along the frequent tracks of MCSs. There were two daily peaks in the numbers of IHP events: one in the late afternoon and one in the early morning. These peaks were more pronounced in July than in other months. MCSs contributed more to the early-morning IHP event peaks than to the late-afternoon peaks. The contributions of MCSs to IHP events with different intensities exhibited no significant difference, which fluctuated around 50% on average over central East China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号