首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
荒漠戈壁下垫面表面动量和感热湍流通量参数化研究   总被引:9,自引:0,他引:9  
用合理筛选以后的野外观测资料,研究了荒漠戈壁地表湍流通量参数化的问题。首先,分析了Monin-obukhov相似函数的特征,并拟台出了其经验公式。结果表明,风速和温度相似性函数随稳定度参数的变化曲线与典型经验曲线差异较小,并且在经验曲线分布范围以内,但中性时的值有所不同。同时,还用该资料给出了动量和标量粗糙度(感热粗糙度)长度的平均值及其标量粗糙度随摩擦速度的变化关系。发现标量粗糙度的平均值大约比动量粗糙度的小一个量级,并且随摩擦速度的增大而减小,但明显比其理论预测值要大。  相似文献   

2.
区域气候模式RegCM2对标量粗糙敏感性试验   总被引:3,自引:0,他引:3  
和渊  苏炳凯等 《气象科学》2001,21(2):136-146
在地气通量的计算中,一般没有考虑温度、水汽、动量的相应粗糙度之间的不同。本文将标量粗糙度Z0T和Z0q引入区域气候模式RegCM2的陆面过程BATS中,用1991年6月与7月的观测资料作了三组敏感性试验,并同实况进行了比较。结果表明:在区域气候模式RegCM2中引入标量粗糙度后,提高了地气间感热通量与潜热通量的计算精度,改善了地表温度和地表比湿的模拟,进而改变了降水的模拟,表明区域气候模式对标量粗糙是敏感的,并且在晴天状况下更为敏感。  相似文献   

3.
卫星遥感结合地面资料对区域表面动量粗糙度的估算   总被引:10,自引:0,他引:10  
利用地面湍流观测资料估算了黑河实验区几个典型下垫面的局地地表动量粗糙度,与卫星观测Landsat TM资料相结合得到了由标准化差值植被指数(NDVI)计算地表动量粗糙度的经验关系式,进而估算了实验区夏季和近冬季的地表粗糙度的区域分布,并对所得关系式进行了合理性检验。  相似文献   

4.
标量粗糙度对地气交换的影响   总被引:5,自引:2,他引:3  
任军芳  苏炳凯  赵鸣 《大气科学》1999,23(3):349-358
为提高地-气间感热和潜热通量的精度,利用Garratt的公式将标量粗糙度Z0T和Z0q引入BATS,对六种不同的植被作对比试验。结果表明:标量粗糙度Z0T和Z0q均远远小于动量粗糙度Z0,约相差3~10个数量级不等。晴天状况下,农作物区Z0/Z0T最小,约103,阔叶林最大,达1010;雨天状况下,各种植被间标量粗糙度的差异减小了。计算的地表温度、感热通量、潜热通量较原BATS的更为合理。  相似文献   

5.
大气模式中表面水热通量计算的一些问题   总被引:1,自引:0,他引:1  
赵鸣  曾旭斌 《气象学报》2000,58(3):340-346
对现有的大气模式中计算海面和大气间水、热通量的通量-廓线关系式进行了评论,提出一个理论上较完整的通量-廓线关系式。其中考虑了水汽对M-O参数的影响,并引进相应于虚位温的标量粗糙度。MoanaWave的实测资料表明,由于该资料相应于温度的粗糙度zoh和湿度粗糙度zoq相差不大,使现有的公式计算结果与文中提出的公式差别不大。当zoh,zoq差别大时,两种公式结果有一定的差别。而文中公式理论上更为合理。还将不稳定状态下计算通量的简化方法推广到海面。  相似文献   

6.
热平流影响下湿润地表的通量-廓线关系   总被引:3,自引:0,他引:3       下载免费PDF全文
张强  胡隐樵 《大气科学》1995,19(1):8-20
在有热平流影响的湿润地表,对Businger-Dyer创立的经典通量-廓线关系作了简单的非线性作用修正。并利用热量和水汽输送方程两种不同简化方程分别对非线性修正因子a'v进行了理论分析和讨论,表明在热平流影响下的湿润地表α'v<1,且由理论方地出一个αv与ζ的简化关系式。最后,用经参数化后得到的α'v表达式和修正后的相似性关系式联立构成的闭合方程组,以及用HEIFE的资料求解出α'v及其它特征参数  相似文献   

7.
中国西北干旱区戈壁下垫面夏季的热力输送   总被引:6,自引:1,他引:5  
以敦煌戈壁站2004年6月和2008年8月的常规观测和超声观测为例,分析了西北干旱区戈壁下垫面夏季热力输送的一般过程及特征。首先评价了湍流通量的观测质量以及仪器观测的地表能量通量闭合问题,结果表明敦煌戈壁站的观测在白天总体较好。夏季地表能量通量的平均日变化显示,潜热通量整天都很小,可以忽略,白天到达地表的短波辐射以及地表向上的长波辐射非常强,地表净辐射主要转化为感热输送(敦煌戈壁站在中午时平均分别达380W·m-2以上和250W·m-2以上);夜间土壤释放热量以平衡地表的辐射冷却,感热通量略低于0。白天时地表大气经常触发自由对流活动,影响动量通量的观测质量,并有效输送地表热力至上层大气中,有助于形成超厚大气边界层。分析了戈壁下垫面的动量粗糙度特征和热力粗糙度特征(敦煌戈壁站动量粗糙度约为0.6mm),热力粗糙度基本小于动量粗糙度一个量级,这符合目前对干旱区戈壁下垫面热力输送特征的初步认识。  相似文献   

8.
张强  胡隐樵 《大气科学》1995,19(1):8-20
在有热平流影响的湿润地表,对Businger-Dyer创立的经典通量—廓线关系作了简单的非线性作用修正。并利用热量和水汽输送方程两种不同简化方程分别对非线性修正因子α'V进行了理论分析和讨论,表明在热平流影响下的湿润地表α'V<1,且由理论方程推导出一个α'V与ζ的简化关系式。最后,用经参数化后得到的α'V表达式和修正后的相似性关系式联立构成的闭合方程组,以及用HEIFE的资料求解出αV及其它特征参数,并且拟合出αV与某些特征参数的经验关系。  相似文献   

9.
冬季北京城市近地层的气象特征   总被引:14,自引:1,他引:14  
运用2001年1~3月北京大气边界层和大气化学综合试验期间,中国科学院大气物理研究所铁塔上所获得的8~320 m 15层风、温度和湿度梯度资料,对冬季北京城市边界层特征进行了诊断分析.结果表明,在冬季北京城市边界层中,平均而言地表粗糙度为1.34、零平均位移约为20 m;温度基本上随高度呈线性变化;风速随高度的变化并不总遵循对数关系,尤其是在午前和夜间,风速与高度之间对数关系的不显著率可达30%~40%.不能简单套用在Monin-Obuhov相似理论中由Businger-Dve风廓线层结订正获得的近地面层动量、热量和水汽湍流输送计算公式.  相似文献   

10.
张杰  张强  黄建平 《高原气象》2010,29(3):662-670
结合2005年中国西北半干旱区定西试验站的观测资料,使用9种空气动力学方法,估算了阻抗和感热通量,并与涡动相关阻抗结果进行了对比,分析了5~9月涡度相关测得阻抗的平均日变化特征,结果表明:(1)由于西北干旱、半干旱区和黄土高原的稀疏植被地区在植物生长季节内存在温度高、降水少、空气干燥等特点,热量和水汽输送具有特殊性;Choudh-1、Verma-R空气动力学阻抗方法对热量和动量传输的粗糙度长度、热量和动量及水汽输送的修正函数描述得较好,空气动力学阻抗估算精度较好,由此获得的感热效果也较好,较适用于该地区。(2)风速对阻抗起主要作用;植被覆盖度增加和植被密度增大的同时也增加了热量和水汽传输的粗糙度,有助于空气动力学阻抗降低。(3)采用Choudh-1方法和遥感资料反演的阻抗效果较好。  相似文献   

11.
Infrared crown radiation temperatures as observed over a dense Douglas fir forest are analyzed in the context of similarity theory and the concept of transport resistances. As such we obtain a rather high value of the roughness length for heat, which is about equal to the roughness length for momentum. This value can be explained by the more efficient transport of heat relative to momentum in the roughness sublayer of the forest. Correcting for this effect we arrive at the classic value for homogeneous terrain of about 0.1 times the roughness length for momentum. For unstable cases the presence of enhanced mixing of heat in the roughness sublayer leads to a modified integral stability function for the dimensionless potential temperature difference between the surface and the top of the roughness sublayer. The observations give some evidence for this different stability behaviour. The analysis suggests that during daytime the radiative surface temperature and the aerodynamic surface temperature are not significantly different when used to estimate fluxes. Daytime trunk space air temperature is satisfactory parameterized with the concept of gusts and with surface renewal analysis. As such it is related to the sensible heat flux and the storage heat flux. Night time radiation temperatures at times strongly deviate from the expected behaviour based on similarity theory and the roughness length for heat, suggesting that the concept of a single surface temperature is too simple for such cases.  相似文献   

12.
Eddy-correlation measurements above an uneven-aged forest, a uniform-irrigated bare soil field, and within a grass-covered forest clearing were used to investigate the usefulness of the fluxvariance method above uniform and non-uniform terrain. For this purpose, the Monin and Obukhov (1954) variance similarity functions were compared with direct measurements. Such comparisons were in close agreement for momentum and heat but not for water vapor. Deviations between measured and predicted similarity functions for water vapor were attributed to three factors: 1) the active role of temperature in surface-layer turbulence, 2) dissimilarity between sources and sinks of heat and water vapor at the ground surface, and 3) the non-uniformity in water vapor sources and sinks. It was demonstrated that the latter non-uniformity contributed to horizontal gradients that do not scale with the vertical flux. These three factors resulted in a turbulence regime that appeared more efficient in transporting heat than water vapor for the dynamic convective sublayer but not for the dynamic sublayer. The agreement between eddy-correlation measured and flux-variance predicted sensible heat flux was better than that for latent heat flux at all three sites. The flux-variance method systematically overestimated the latent heat flux when compared to eddy-correlation measurements. It was demonstrated that the non-uniformity in water vapor sources reduced the surface flux when compared to an equivalent uniform terrain subjected to identical shear stress, sensible heat flux, and atmospheric water vapor variance. Finally, the correlation between the temperature and water vapor fluctuations was related to the relative efficiency of surface-layer turbulence in removing heat and water vapor. These relations were used to assess critical assumptions in the derivation of the flux-variance formulation.  相似文献   

13.
A surface renewal model that links organized eddy motion to the latent and sensible heat fluxes is tested with eddy correlation measurements carried out in a 13m tall uniform Loblolly pine plantation in Duke Forest, Durham, North Carolina. The surface renewal model is based on the occurance of ramp-like patterns in the scalar concentration measurements. To extract such ramp-like patterns from Eulerian scalar concentration measurements, a newly proposed time-frequency filtering scheme is developed and tested. The time-domain filtering is carried out using compactly-supported orthonormal wavelets in conjunction with the Universal Wavelet Thresholding approach of Donoho and Johnstone, while the frequency filtering is carried out by a band-pass sine filter centered around the ramp-occurrence frequency as proposed by other studies. The method was separately tested for heat and water vapour with good agreement between eddy correlation flux measurements and model predictions. The usefulness of the flux-variance method to predict sensible and latent heat fluxes is also considered. Our measurements suggest that the simple flux-variance method reproduces the measured heat and momentum fluxes despite the fact that the variances were measured within the roughness sublayer and not in the surface layer. Central to the predictions of water vapour fluxes using the flux-variance approach is the similarity between heat and water vapour transport by the turbulent air flow. This assumption is also investigated for this uniform forest terrain.  相似文献   

14.
Eddy-covariance observations above the densely built-up Centre of Nanjing were made from December 2011 to August 2012. Separate eddy-covariance systems installed at two levels on a 36-m tower located on a rooftop were operated simultaneously, and observations grouped into two sectors (A, B) according to the prevalent wind directions. For sector A, where the nearby buildings are all below the lower measurement level, the sensible heat and momentum fluxes are generally greater at the upper level. For sector B, where several high-rise buildings are located upwind, the sensible heat and momentum fluxes at the upper level are close to those at the lower level. The analysis shows that the turbulent eddy characteristics differ between the two wind sectors, leading to a different behaviour of turbulent exchange between the two levels. A hypothesis is proposed that addresses the vertical variation of turbulent fluxes in the urban roughness sublayer (RSL). For sector A, the buildings block the flow, change the trajectory of scalars, and distort the footprint of scalar fluxes; this ‘blocking effect’ is believed to lead to a smaller sensible heat flux above the canopy layer. Such an effect should decrease with height in the RSL, explaining the increase of the observed turbulent heat flux with height. In addition, the presence of non-uniform building heights adversely affects turbulence organization around the canopy top, and likely elevates the inflection point of the mean flow to a higher elevation close to the upper measurement level, where larger shear results in a larger momentum flux. For sector B, wake effects from the nearby high-rise buildings strongly reduce turbulence organization at higher elevations, leading to similar sensible heat and momentum fluxes at both measurement levels.  相似文献   

15.
We present eddy-correlation measurements of heat and water vapour fluxes made during the Antarctic winter. The surface layer was stably stratified throughout the period of observation and sensible heat fluxes were always directed downwards. However, both upward and downward water vapour fluxes were observed. Their magnitude was generally small and the latent heat flux was not a significant fraction of the surface energy budget. The variation of heat and water vapour fluxes with stability is well described by Monin-Obukhov similarity theory but the scalar roughness lengths for heat and water vapour appear to be much larger than the momentum roughness length. Possible explanations of this effect are discussed.  相似文献   

16.
A Simple Method of Estimating Scalar Fluxes Over Forests   总被引:1,自引:0,他引:1  
A simple aerodynamic-variance method is proposed to fill gaps in continuous CO2 flux measurements in rainy conditions, when open-path analysers do not function. The method requires turbulent conditions (friction velocity greater than 0.1 ms–1), and uses measurements of mean wind speed, and standard deviations of temperature and CO2 concentration fluctuations to complement, and at times replace, eddy-covariance measurements of friction velocity, sensible heat flux and CO2 flux. Friction velocity is estimated from the mean wind speed with a flux-gradient relationship modified for the roughness sublayer. Since normalised standard deviations do not follow Monin-Obukhov similarity theory in the roughness sublayer, a simple classification scheme according to the scalar turbulence scale was used. This scheme is shown to produce sensible heat and CO2 flux estimates that are well correlated with the measured values.  相似文献   

17.
Although the bulk aerodynamic transfer coefficients for sensible (C H ) and latent (C E ) heat over snow and sea ice surfaces are necessary for accurately modeling the surface energy budget, they have been measured rarely. This paper, therefore, presents a theoretical model that predicts neutral-stability values of C H and C E as functions of the wind speed and a surface roughness parameter. The crux of the model is establishing the interfacial sublayer profiles of the scalars, temperature and water vapor, over aerodynamically smooth and rough surfaces on the basis of a surface-renewal model in which turbulent eddies continually scour the surface, transferring scalar contaminants across the interface by molecular diffusion. Matching these interfacial sublayer profiles with the semi-logarithmic inertial sublayer profiles yields the roughness lengths for temperature and water vapor. When coupled with a model for the drag coefficient over snow and sea ice based on actual measurements, these roughness lengths lead to the transfer coefficients. C E is always a few percent larger than CH. Both decrease monotonically with increasing wind speed for speeds above 1 m s–1, and both increase at all wind speeds as the surface gets rougher. Both, nevertheless, are almost always between 1.0 × 10–3 and 1.5 × 10–3.  相似文献   

18.
The roughness length for momentum (z0m), zero-plane displacementheight (d), and roughness length for heat (z0h) are importantparameters used to estimate land-atmosphere energy exchange. Although many different approaches have been developed to parameterizemomentum and heat transfer, existing parameterizations generally utilizehighly simplified representations of vegetation structure. Further, a mismatch exists between the treatments used for momentum and heat exchange and those used for radiative energy exchanges. In this paper, parameterizations are developed to estimate z0m, d, and z0h for forested regimes using information related to tree crown density and structure. The parameterizations provide realistic representationfor the vertical distribution of foliage within canopies, and include explicit treatment for the effects of the canopy roughness sublayer and leaf drag on momentum exchange. The proposed parameterizationsare able to realistically account for site-to-site differences in roughness lengths that arise from canopy structural properties.Comparisons between model predictions and field measurements show good agreement, suggesting that the proposed parameterizations capture the most important factors influencing turbulent exchange of momentumand heat over forests.  相似文献   

19.
An integrated canopy micrometeorological model is described for calculating CO2, water vapor and sensible heat exchange rates and scalar concentration profiles over and within a crop canopy. The integrated model employs a Lagrangian random walk algorithm to calculate turbulent diffusion. The integrated model extends previous Lagrangian modelling efforts by employing biochemical, physiological and micrometeorological principles to evaluate vegetative sources and sinks. Model simulations of water vapor, CO2 and sensible heat flux densities are tested against measurements made over a soybean canopy, while calculations of scalar profiles are tested against measurements made above and within the canopy. The model simulates energy and mass fluxes and scalar profiles above the canopy successfully. On the other hand, model calculations of scalar profiles inside the canopy do not match measurements.The tested Lagrangian model is also used to evaluate simpler modelling schemes, as needed for regional and global applications. Simple, half-order closure modelling schemes (which assume a constant scalar profile in the canopy) do not yield large errors in the computation of latent heat (LE) and CO2 (F c ) flux densities. Small errors occur because the source-sink formulation of LE andF c are relatively insensitive to changes in scalar concentrations and the scalar gradients are small. On the other hand, complicated modelling frames may be needed to calculate sensible heat flux densities; the source-sink formulation of sensible heat is closely coupled to the within-canopy air temperature profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号