首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Even though multi-model prediction systems may have better skill in predicting the interannual variability (IAV) of Indian summer monsoon (ISM), the overall performance of the system is limited by the skill of individual models (single model ensembles). The DEMETER project aimed at seasonal-to-interannual prediction is not an exception to this case. The reasons for the poor skill of the DEMETER individual models in predicting the IAV of monsoon is examined in the context of the influence of external and internal components and the interaction between intraseasonal variability (ISV) and IAV. Recently it has been shown that the ISV influences the IAV through very long breaks (VLBs; breaks with duration of more than 10 days) by generating droughts. Further, all VLBs are associated with an eastward propagating Madden–Julian Oscillation (MJO) in the equatorial region, facilitated by air–sea interaction on intraseasonal timescales. This VLB-drought–MJO relationship is analyzed here in detail in the DEMETER models. Analyses indicate that the VLB-drought relationship is poorly captured by almost all the models. VLBs in observations are generated through air–sea interaction on intraseasonal time scale and the models’ inability to simulate VLB-drought relationship is shown to be linked to the models’ inability to represent the air–sea interaction on intraseasonal time scale. Identification of this particular deficiency of the models provides a direction for improvement of the model for monsoon prediction.  相似文献   

2.
Reasonably realistic climatology of atmospheric and oceanic parameters over the Asian monsoon region is a pre-requisite for models used for monsoon studies. The biases in representing these features lead to problems in representing the strength and variability of Indian summer monsoon (ISM). This study attempts to unravel the ability of a state-of-the-art coupled model, SINTEX-F2, in simulating these characteristics of ISM. The coupled model reproduces the precipitation and circulation climatology reasonably well. However, the mean ISM is weaker than observed, as evident from various monsoon indices. A wavenumber–frequency spectrum analysis reveals that the model intraseasonal oscillations are also weaker-than-observed. One possible reason for the weaker-than-observed ISM arises from the warm bias, over the tropical oceans, especially over the equatorial western Indian Ocean, inherent in the model. This warm bias is not only confined to the surface layers, but also extends through most of the troposphere. As a result of this warm bias, the coupled model has too weak meridional tropospheric temperature gradient to drive a realistic monsoon circulation. This in turn leads to a weakening of the moisture gradient as well as the vertical shear of easterlies required for sustained northward propagation of rain band, resulting in weak monsoon circulation. It is also noted that the recently documented interaction between the interannual and intraseasonal variabilities of ISM through very long breaks (VLBs) is poor in the model. This seems to be related to the inability of the model in simulating the eastward propagating Madden–Julian oscillation during VLBs.  相似文献   

3.
文中利用EOF分析大气季节内振荡 (MJO)的时空变化的方法 ,研究了 1996年 9月~ 1997年 6月间的MJO活动对生成在印度洋—西太平洋海域的热带低压 /气旋的影响。结果发现 ,除西北太平洋之外 ,发生在其他区域的热带低压 /气旋有半数以上生成在向东移动的MJO的湿位相中。伴随MJO的向东传播 ,热带低压 /气旋平均生成位置也随之向东移动 ,而生成在西北太平洋的热带低压 /气旋分别受到向东和向西传播的MJO影响  相似文献   

4.
为了分析 EI Nio事件发生和消亡中热带太平洋纬向风应力的动力作用,建立一个类似于Zebiak的简单热带海洋数值模式,在观测到的风应力异常的强迫下,模拟赤道太平洋地区 1971年1月至 1998年8月海表温度异常的变化。结果表明,模式对观测的Nio3区海表温度异常(SSTA)有很好的模拟能力。模拟和观测Ni区SSTA之间的相关系数可达 0.90。模式对 El Nio事件期间赤道太平洋海表温度异常随时间变化也有较好的模拟能力。为了分析El Nio期间SSTA的空间分布及其随时间变化的动力学机制,还对1986~1989年 ENSO循环期间赤道太平洋地区观测的 SSTA的传播特征及其形成机制进行了分析。模式较好地模拟出了观测到的赤道太平洋地区SSTA的传播特征,即从1986年底至1987年 4月, SSTA具有向东传播的特征,从 1987年 6月至 1988年 2月具有向西传播的特征。动力学分析的结果表明,赤道中西太平洋地区的缔向风应力异常对 El Nio事件的发生和消亡具有重要作用。赤道中西太平洋地区的西风异常可强迫出东传的Kelvin波,这个东传的 Kelvin波对正 SSTA的东传起主要作用,当这个东传的 Kelv  相似文献   

5.
为了分析ElNio事件发生和消亡中热带太平洋纬向风应力的动力作用,建立一个类似于Zebiak的简单热带海洋数值模式,在观测到的风应力异常的强迫下,模拟赤道太平洋地区1971年1月至1998年8月海表温度异常的变化。结果表明,模式对观测的Nio3区海表温度异常(SSTA)有很好的模拟能力。模拟和观测Nio3区SSTA之间的相关系数可达0.90。模式对ElNio事件期间赤道太平洋海表温度异常随时间变化也有较好的模拟能力。为了分析ElNio期间SSTA的空间分布及其随时间变化的动力学机制,还对19861989年ENSO循环期间赤道太平洋地区观测的SSTA的传播特征及其形成机制进行了分析。模式较好地模拟出了观测到的赤道太平洋地区SSTA的传播特征,即从1986年底至1987年4月,SSTA具有向东传播的特征,从1987年6月至1988年2月具有向西传播的特征。动力学分析的结果表明,赤道中西太平洋地区的纬向风应力异常对ElNio事件的发生和消亡具有重要作用。赤道中西太平洋地区的西风异常可强迫出东传的Kelvin波,这个东传的Kelvin波对正SSTA的东传起主要作用,当这个东传的Kelvin波到达东边界,由于东边界的反射作用,在东边界产生西传的Rossby波,这个西传的Rossby波对赤道中东太平洋地区正SSTA的西传起主要作用。东传Kelvin波和反射的Rossby波对ElNio期间赤道东太平洋正SSTA二次峰值的形成具有重要作用。  相似文献   

6.
Observational evidence suggests a link between the summer Madden Julian Oscillation (MJO) and anomalous convection over West Africa. This link is further studied with the help of the LMDZ atmospheric general circulation model. The approach is based on nudging the model towards the reanalysis in the Asian monsoon region. The simulation successfully captures the convection associated with the summer MJO in the nudging region. Outside this region the model is free to evolve. Over West Africa it simulates convection anomalies that are similar in magnitude, structure, and timing to the observed ones. In accordance with the observations, the simulation shows that 15–20?days after the maximum increase (decrease) of convection in the Indian Ocean there is a significant reduction (increase) in West African convection. The simulation strongly suggests that in addition to the eastward-moving MJO signal, the westward propagation of a convectively coupled equatorial Rossby wave is needed to explain the overall impact of the MJO on convection over West Africa. These results highlight the use of MJO events to potentially predict regional-scale anomalous convection and rainfall spells over West Africa with a time lag of approximately 15–20?days.  相似文献   

7.
The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler?CHendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly patterns were very similar to that during Phase 1 and 2 except for above normal convective anomalies over equatorial Indian Ocean. A general decrease in the rainfall was also observed over most parts of the country. The associated dry conditions extended up to northwest Pacific. Thus the impact of the MJO on the monsoon was not limited to the Indian region. The impact was rather felt over larger spatial scale extending up to Pacific. This study also revealed that the onset of break and active events over India and the duration of these events are strongly related to the Phase and strength of the MJO. The break events were relatively better associated with the strong MJO Phases than the active events. About 83% of the break events were found to be set in during the Phases 7, 8, 1 and 2 of MJO with maximum during Phase 1 (40%). On the other hand, about 70% of the active events were set in during the MJO Phases of 3 to 6 with maximum during Phase 4 (21%). The results of this study indicate an opportunity for using the real time information and skillful prediction of MJO Phases for the prediction of break and active conditions which are very crucial for agriculture decisions.  相似文献   

8.
9.
By analyzing NCEP-NCAR reanalysis daily data for 1979–2016, the modulation by Madden-Julian Oscillation (MJO) of the wintertime surface air temperature (SAT) over high latitude is examined. The real-time multivariate MJO (RMM) index, which divides the MJO into eight phases, is used. It is found that a significantly negative SAT anomaly over the northern high latitude region of (180°–60 °W, 60°–90 °N) lags the MJO convection for 1∼2 weeks in phase 3, in which the enhanced convective activity exists over the Indian Ocean. While a significantly positive SAT anomaly appears over the same region following the MJO phase 7, as the tropical heating shows an opposite sign. Analysis of the anomalous circulation indicates that the observed SAT signal is probably a result of the northeastward propagating Rossby wave train triggered by MJO-related tropical forcing through Rossby wave energy dispersion. By using an anomalous atmospheric general circulation model (AGCM), the significant effect of tropical forcing on organizing the extratropical circulation anomaly is confirmed. Analysis of a temperature tendency equation further reveals that the intraseasonal SAT anomaly is primarily attributed to the advection of the mean temperature by the wind anomaly associated with the anomalous circulation of the MJO-related variability.  相似文献   

10.
The role of spring Wyrtki jets in modulating the equatorial Indian Ocean and the regional climate is an unexplored problem. The source of interannual variability in the spring Wyrtki jets is explored in this study. The relationship between intraseasonal and interannual variability from 1958 to 2008 and its relation with Indian Summer Monsoon is further addressed. Analysis reveals that the interannual variability in spring Wyrtki jets is controlled significantly by their intraseasonal variations. These are mostly defined by a single intraseasonal event of duration 20 days or more which either strengthens or weakens the seasonal mean jet depending on its phase. The strong spring jets are driven by such intraseasonal westerly wind bursts lasting for 20-days or more, whereas the weak jets are driven by weaker intraseasonal westerlies. During the years of strong jets, the conventional westward phase propagation of Wyrtki jets is absent and instead there is an eastward phase propagation indicating the possible role of Madden Julian Oscillation (MJO) in strengthening the spring Wyrtki jets. These strong intraseasonal westerly wind bursts with eastward phase propagation during strong years are observed mainly in late spring and have implications on June precipitation over the Indian and adjoining land mass. Anomalously strong eastward jets accumulate warm water in the eastern equatorial Indian Ocean (EIO), leading to anomalous positive upper ocean heat content and supporting more local convection in the east. This induces subsidence over the Indian landmass and alters monsoon rainfall by modulating monsoon Hadley circulation. In case of weak current years such warm anomalies are absent over the eastern EIO. Variations in the jet strength are found to have strong impact on sea level anomalies, heat content, salinity and sea surface temperature over the equatorial and north Indian Ocean making it a potentially important player in the north Indian Ocean climate variability.  相似文献   

11.
The boreal summer intraseasonal oscillation (BSISO) of the Asian summer monsoon (ASM) is one of the most prominent sources of short-term climate variability in the global monsoon system. Compared with the related Madden-Julian Oscillation (MJO) it is more complex in nature, with prominent northward propagation and variability extending much further from the equator. In order to facilitate detection, monitoring and prediction of the BSISO we suggest two real-time indices: BSISO1 and BSISO2, based on multivariate empirical orthogonal function (MV-EOF) analysis of daily anomalies of outgoing longwave radiation (OLR) and zonal wind at 850 hPa (U850) in the region 10°S–40°N, 40°–160°E, for the extended boreal summer (May–October) season over the 30-year period 1981–2010. BSISO1 is defined by the first two principal components (PCs) of the MV-EOF analysis, which together represent the canonical northward propagating variability that often occurs in conjunction with the eastward MJO with quasi-oscillating periods of 30–60 days. BSISO2 is defined by the third and fourth PCs, which together mainly capture the northward/northwestward propagating variability with periods of 10–30 days during primarily the pre-monsoon and monsoon-onset season. The BSISO1 circulation cells are more Rossby wave like with a northwest to southeast slope, whereas the circulation associated with BSISO2 is more elongated and front-like with a southwest to northeast slope. BSISO2 is shown to modulate the timing of the onset of Indian and South China Sea monsoons. Together, the two BSISO indices are capable of describing a large fraction of the total intraseasonal variability in the ASM region, and better represent the northward and northwestward propagation than the real-time multivariate MJO (RMM) index of Wheeler and Hendon.  相似文献   

12.
Delayed impact of El Niño on Tropical Indian Ocean (TIO) Sea Surface Temperature (SST) variations and associated physical mechanisms are well documented by several studies. However, TIO SST evolution during the decay phase of La Niña and related processes are not adequately addressed before. Strong cooling associated with La Niña decay over the TIO could influence climate over the Indian Oceanic rim including Indian summer monsoon circulation and remotely northwest Pacific circulation. Thus understanding the TIO basin-wide cooling and related physical mechanisms during decaying La Niña years is important. Composite analyses revealed that negative SST anomalies allied to La Niña gradually dissipate from its mature phase (winter) till subsequent summer in central and eastern Pacific. In contrast, magnitude of negative SST anomalies in TIO, induced by La Niña, starts increasing from winter and attains their peak values in early summer. It is found that variations in heat flux play an important role in SST cooling over the central and eastern equatorial Indian Ocean, Bay of Bengal and part of Arabian Sea from late winter to early summer during the decay phase of La Niña. Ocean dynamical processes are mainly responsible for the evolution of southern TIO SST cooling. Strong signals of westward propagating upwelling Rossby waves between 10°S to 20°S are noted throughout (the decaying phase of La Niña) spring and summer. Anomalous cyclonic wind stress curl to the south of the equator is responsible for triggering upwelling Rossby waves over the southeastern TIO. Further, upwelling Rossby waves are also apparent in the Arabian Sea from spring to summer and partly contributing to the SST cooling. Heat budget analysis reveals that negative SST/MLT (mixed layer temperature) anomalies over the Arabian Sea are mostly controlled by heat flux from winter to spring and vertical advection plays an important role during early summer. Vertical and horizontal advection terms primarily contribute to the SST cooling anomalies over southern TIO and the Bay of Bengal cooling is primarily dominated by heat flux. Further we have discussed influence of TIO cooling on local rainfall variations.  相似文献   

13.
This paper investigates why some La Niña events are followed by another La Niña and some others are not. We propose two preconditions that result in continuation of a La Niña. The first one is that La Niña must be a strong event (a major La Niña). This ensures that the reflected Rossby wave signal at the eastern boundary of the Pacific has a strong westward propagating cold ocean temperature anomaly over the off-equatorial region. The off-equator cold anomaly may not be conducive to the equatorial recharge process, and as a result, may favor the persistence of cold ocean subsurface temperature anomaly and prevent the transition from La Niña to El Niño. The second precondition is whether there are eastward propagating downwelling Kelvin waves during the decay phase of a major La Niña. Eastward propagating downwelling Kelvin waves could lead to demise for a tendency for a follow-up La Niña. The equatorial Kelvin wave activities are associated with fluctuations of surface wind in the equatorial far-western Pacific. The analysis suggests that both the surface wind in the equatorial far-western Pacific and the recharge/discharge of the equatorial Pacific are indicators for occurrence or no occurrence of a follow-up La Niña event.  相似文献   

14.
Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.  相似文献   

15.
In this paper we use sea surface height (SSH) derived from satellite altimetry and an analytical linear equatorial wave model to interpret the evolution of the Indian Ocean Dipole (IOD) in the framework of recharge oscillator theory. The specific question we address is whether heat content in the equatorial band, for which SSH is a proxy, is a predictor of IOD development as it is for El Niño and the Southern Oscillation (ENSO) in the Pacific. We find that, as in the Pacific, there are zonally coherent changes in heat content along the equator prior to the onset of IOD events. These changes in heat content are modulated by wind-forced westward propagating Rossby waves in the latitude band 5°–10°S, which at the western boundary reflect into Kelvin waves trapped to the equator. The biennial character of the IOD is affected by this cycling of wave energy between 5° and 10°S and the equator. Heat content changes are a weaker leading indicator of IOD sea surface temperature anomaly development than is the case for ENSO in the Pacific though because other factors are at work in generating IOD variability, one of which is ENSO forcing itself through changes in the Walker Circulation.  相似文献   

16.
Boreal summer intraseasonal (30–50 day) variability (BSISV) over the Asian monsoon region is more complex than its boreal winter counterpart, the Madden–Julian oscillation (MJO), since it also exhibits northward and northwestward propagating convective components near India and over the west Pacific. Here we analyze the BSISV in the CMIP3 and two CMIP2+ coupled ocean–atmosphere models. Though most models exhibit eastward propagation of convective anomalies over the Indian Ocean, difficulty remains in simulating the life cycle of the BSISV, as few represent its eastward extension into the western/central Pacific. As such, few models produce statistically significant anomalies that comprise the northwest to southeast tilted convection, which results from the forced Rossby waves that are excited by the near-equatorial convective anomalies. Our results indicate that it is a necessary, but not sufficient condition, that the locations the time-mean monsoon heat sources and the easterly wind shear be simulated correctly in order for the life cycle of the BSISV to be represented realistically. Extreme caution is needed when using metrics, such as the pattern correlation, for assessing the fidelity of model performance, as models with the most physically realistic BSISV do not necessarily exhibit the highest pattern correlations with observations. Furthermore, diagnostic latitude-time plots to evaluate the northward propagation of convection from the equator to India and the Bay of Bengal also need to be used with caution. Here, incorrectly representing extratropical–tropical interactions can give rise to “apparent” northward propagation when none exists in association with the eastward propagating equatorial convection. Despite these cautions, the use of multiple cross-checking diagnostics enables the fidelity of the simulation of the BSISV to be meaningfully assessed.  相似文献   

17.
This study examines wave disturbances on submonthly (6–30-day) timescales over the tropical Indian Ocean during Southern Hemisphere summer using Japanese Reanalysis (JRA25-JCDAS) products and National Oceanic and Atmospheric Administration outgoing longwave radiation data. The analysis period is December–February for the 29 years from 1979/1980 through 2007/2008. An extended empirical orthogonal function (EEOF) analysis of daily 850-hPa meridional wind anomalies reveals a well-organized wave-train pattern as a dominant mode of variability over the tropical Indian Ocean. Daily lagged composite analyses for various atmospheric variables based on the EEOF result show the structure and evolution of a wave train consisting of meridionally elongated troughs and ridges along the Indian Ocean Intertropical Convergence Zone (ITCZ). The wave train is oriented in a northeast–southwest direction from Sumatra toward Madagascar. The waves have zonal wavelengths of about 3,000–5,000 km and exhibit westward and southwestward phase propagation. Individual troughs and ridges as part of the wave train sequentially travel westward and southwestward from the west of Sumatra into Madagascar. Meanwhile, eastward and northeastward amplification of the wave train occurs associated with the successive growth of new troughs and ridges over the equatorial eastern Indian Ocean. This could be induced by eastward and northeastward wave energy dispersion from the southwestern to eastern Indian Ocean along the mean monsoon westerly flow. In addition, the waves modulate the ITCZ convection. Correlation statistics show the average behavior of the wave disturbances over the tropical Indian Ocean. These statistics and other diagnostic measures are used to characterize the waves obtained from the composite analysis. The waves appear to be connected to the monsoon westerly flow. The waves tend to propagate through a band of the large meridional gradient of absolute vorticity produced by the mean monsoon westerly flow. This suggests that the monsoon westerly flow provides favorable background conditions for the propagation and maintenance of the waves and acts as a waveguide over the tropical Indian Ocean. The horizontal structure of the wave train may be interpreted as that of a mixture of equatorial Rossby waves and mixed Rossby-gravity wavelike gyres.  相似文献   

18.
This study proposes an overview of the main synoptic, medium-range and intraseasonal modes of convection and precipitation in northern spring (March–June 1979–2010) over West and Central Africa, and to understand their atmospheric dynamics. It is based on daily National Oceanic and Atmospheric Administration outgoing longwave radiation and Cloud Archive User Service Tb convection data, daily TRMM and Global Precipitation Climatology Project rainfall products and daily ERA-Interim reanalysis atmospheric fields. It is first shown that mesoscale convective systems can be modulated in terms of occurrences number and intensity at such time scales. Based on empirical orthogonal function analyses on the 2–90-day filtered data it is shown that the main mode of convective and rainfall variability is located along the Guinean coast with a moderate to weak extension over Central Africa. Corresponding regressed deseasonalised atmospheric fields highlight an eastward propagation of patterns consistent with convectively coupled equatorial Kelvin wave dynamics. Then a singular spectrum analysis combined with a Hierarchical Ascendant Classification enable to define objectively the main spectral bands of variability within the 2–90-day band, and highlight three main bands, 2–8-, 8–22- and 20–90-day. Within these three bands, space–time spectral decomposition is used to identify the relative impacts of convectively coupled equatorial Kelvin, Rossby and inertia–gravity waves, as well as Madden–Julian Oscillation (MJO) signal. It confirms that eastward propagating signals (convectively coupled equatorial Kelvin wave and MJO) are highly dominant in these convection and precipitation variability modes over the Guinean coast during northern spring. So, while rain-producing individual systems are moving westward, their activity are highly modulated by sub-regional and regional scales envelops moving to the east. This is a burning issue for operational forecasting centers to be able to monitor and predict such eastward propagating envelops of convective activity.  相似文献   

19.
Indian summer monsoon (ISM) variability is forced from external factors (like the El Niño Southern Oscillation, ENSO) but it contains also an internal component that tends to reduce its potential for predictability. Large-scale and local monsoon indices based on precipitation and atmospheric circulation parameters are used as a measure of ISM variability. In a 9-members ensemble of AMIP-type experiments (with same boundary SST forcing and different initial conditions) their potential predictability is comparable using both local and large-scale monsoon indices. In the sample analyzed, about half of more predictable monsoon years coincide with El Niño and/or positive Indian Ocean Dipole (IOD) events. Summer monsoon characteristics during ENSO and IOD years are analyzed through composites computed over a three years period (i.e. one year before and one year after the event peak) to investigate the mutual relationship between the events lagged in time. The connection between ISM and IOD is mostly confined in the summer and autumn, while that with ENSO is stronger and extends more in time. In the coupled model results the IOD influence on the monsoon is large, even because in the model IOD events are intense and easily reproduced due to a strong air-sea feedback in the eastern side of the basin. Monsoon seasons preceding or following an El Niño or a La Niña event are not exactly symmetric, even in terms of their biennial character. In most of the cases, both in reanalysis and model, El Niño and positive IOD events tend to co-occur with larger anomalies either in the Indo-Pacific ocean sector or over India, while La Niña and negative IOD do not. From the observed record, the ENSO-IOD correlation is positive strong and significant since mid-60s and it may correspond with either strong or weak ENSO-monsoon relationship and with strong or weak IOD-monsoon relationship. A main difference between those periods is the relationship between Indian monsoon rainfall and SST in other ocean basins rather than the Indo-Pacific sector alone.  相似文献   

20.
The southwestern Indian Ocean (SWIO) is characterized by significant climate variability and frequent tropical cyclones (TC). Year-to-year fluctuations of TC and associated oceanic and atmospheric fields in the period 1961–2002 are studied with reanalysis data as composites and cross-correlations, with wavelet filtering and cross-modulus analysis, and by hovmoller analysis and multi-variate statistical modeling. Observational limitations in the early part of the record are recognized. An intense TC-days index is formed and is characterized by quasi-biennial to decadal cycles that relate to ocean Rossby waves and high latitude atmospheric circulations, respectively. New variables are uncovered that significantly improve the seasonal prediction of SWIO TC. One predictor is the geopotential height in the SE Pacific, which explains 31% of SWIO TC variability. It foretells of downstream oscillations in the sub-tropical jet stream, which govern wind shear, an equatorial duct and attendant circulation anomalies over the SWIO. An anti-phase association between Amazon convection and intense TCs is found to be related to the Atlantic Zonal Circulation. Drought across the Amazon is related to an increase in TC activity in the SWIO, when zonal wind anomalies over the Atlantic become upper easterly/lower westerly. This feature is related to Pacific Ocean El Niño Southern Oscillation phase. A La Niña signal favors TC development through a westward propagating cyclonic circulation and downweling Rossby wave in the South Indian Ocean that enhances thermodynamic energy. It is recommended to repeat this analysis every few years to determine whether teleconnections evolve due to climate drift or improving observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号