首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于观测资料和中尺度数值模式WRF对2019年2月14日发生在北京地区的一次典型低涡低槽型降雪系统进行了观测资料分析和数值模拟,研究了降雪产生的云微物理机制,探讨了雪的形成过程并进行了人工催化降雪的数值模拟分析。结果表明:低涡前部暖湿平流带来的水汽和低涡切变线附近强烈的上升运动造成了此次区域性大雪;雪的凝华增长、雪降落过程中凇附云水继续长大、云冰自动转换为雪、冰晶和雪碰并聚合是此次降雪的主要微物理过程。催化模拟显示,人工播撒碘化银催化剂之后,云中产生大量冰晶,增多的冰晶通过凝华增长、碰并、聚合、凇附等转换成雪的过程增加,进而造成地面降雪的增加。  相似文献   

2.
本文以GFS资料为初始场,利用WRF(v3.6.1)模式对2015年第22号台风“彩虹”进行了数值研究。采用CMA(中国气象局)台风最佳路径、MTSAT卫星、自动站降水为观测资料,对比了4个微物理方案(Lin、WSM6、GCE和Morrison)对“彩虹”台风路径、强度、结构、降水的模拟性能。模拟发现上述4个云微物理方案都能较好地模拟出“彩虹”台风西行登陆过程,但是其模拟的台风强度、结构及降水存在较大差异;就水成物而言,除GCE方案对雨水的模拟偏高以外,其他方案对云水、雨水过程的模拟较为接近,其差异主要存在于云冰、雪、霰粒子的模拟上。本文对比分析了WSM6和Morrison两个方案模拟的云微物理过程,发现WSM6方案模拟的雪和霰粒子融化过程显著强于Morrison方案,但是冰相粒子间转化过程的强度明显弱于Morrison方案。云微物理过程的热量收支分析表明:WSM6方案模拟的眼区潜热更强,暖心结构更为显著,台风中心气压更低。细致的云微物理转化分析表明,此次台风降水的主要云微物理过程是水汽凝结成云水和凝华为云冰;生成的云水一方面被雨水收集碰并直接转化为雨水,另一方面先被雪粒子碰并收集转化为霰,然后霰粒子融化成雨水;而生成的云冰则通过碰并增长转化为雪。小部分雪粒子通过碰并收集过冷水滴并淞附增长为霰粒子,随后融化为雨水,大部分雪粒子则直接融化形成地面降水。  相似文献   

3.
应用MM5中尺度模式,选用4种不同云微物理方案(Dudhia简单冰相方案、Reisner混合相方案、Reisner2霰方案和Schultz微物理方案),对2002年7月12-13日祁连山区降水过程进行了数值模拟试验。模拟结果的对比分析表明,不同云微物理方案在祁连山区降水的模拟中对降水落区的模拟均偏南;除Reisner2霰方案外,其他3种方案对降水中心落点的模拟影响不大,降水中心强度对云微物理方案不敏感;显式降水和参数化降水对云微物理方案有不同程度的依赖性;云微物理过程通过影响动力条件发生发展的时间和强度,来影响强降水发生的时间和强度。通过各云微物理参数的分析发现,各物理过程中微物理参数参与降水的过程不同:对Dudhia简单冰相方案来说,雨水和云水是形成降水的主要过程;Reisner混合相方案中降水的形成主要是由于雨水、云水、雪和霰的碰并过程,冰晶的碰并相对较弱;在Reisner2霰方案中,雨水、云水、冰晶、雪和霰均参与碰并碰冻过程;Schultz微物理方案中冰晶、雪和霰的碰并过程更为重要。  相似文献   

4.
利用WRF模式中三种云微物理参数化方案(Lin、Eta和WSM6)对青藏高原一次强降水过程进行模拟试验,将模拟降水结果与实测资料进行对比,以评估不同云微物理参数化方案对该区域降水过程的模拟性能。结果表明:三种方案均能够模拟出此次降水天气过程的发生,但在主要降水区域和降水强度两方面仍与实测资料存在偏差;在水凝物方面,三种方案对冰粒子的模拟较接近,Lin和WSM6方案模拟的雪粒子差异较大,但霰粒子无明显差异。进一步对比分析了Lin和WSM6方案模拟的云微物理转化过程,结果表明:这两种方案都表现出了霰向雨水转化的特点。在Lin方案中,通过水汽向霰粒子凝华、霰碰并水汽凝华生成的雪粒子以及霰碰并云水这三种过程生成的霰粒子最终融化为雨水。而在WSM6方案中,一方面水汽凝结成云水,云水被雪和霰粒子碰并收集转化为霰,之后霰融化为雨水;另一方面水汽凝华为冰粒子,一部分冰转化为雪,雪直接融化为雨水或转化为霰融化为雨水,另一部分冰转化为霰,霰融化为雨水。   相似文献   

5.
一次雨夹雪转暴雪天气过程的微物理模拟研究   总被引:3,自引:1,他引:2       下载免费PDF全文
利用非静力平衡中尺度数值模式MM5,在四重嵌套网格区域内采用Reisner霰方案,对2009年2月12—13日辽宁雨夹雪转暴雪天气过程进行数值模拟,并对云内微物理过程特别是对雨水、雪和霰的源项进行分析。结果表明:雨水与雪碰并和雨水与云水碰并是产生雨水的主要微物理过程,并且雨水的增长主要分布在700 hPa以下。300—200 hPa之间雪的凝华增长、冰晶向雪的自动转化和900 hPa以下雨水与雪碰并成雪是雪增长主要的物理过程。冰晶向雪的自动转化对降雪的增长和长时间维持起到了重要作用。列出了此次天气过程降水云系的三层云结构及微物理过程模型。  相似文献   

6.
利用中尺度气象模式WRF的双参数显示云物理方案,开展冬季冷性层状云降水过程的数值模拟和人工增雨催化数值试验。模拟个例为2013年3月19日北京地区的一次典型降水过程,在分析模拟得到的云中水成物和上升速度分布的基础上设计不同催化试验,研究不同催化时刻(云体发展期、云体成熟期)和三种催化剂量对地面降水、云中水成物浓度、动力场和热力场以及微物理转化过程的影响。模拟试验结果表明:模拟的自然降水分布和实测结果较为一致;不同的催化试验都可以使地面雨量增加,在云体发展期以107个·kg-1剂量进行催化的效果最佳;引入人工冰晶后催化区域水汽和过冷云水含量明显减少、冰晶和雪的含量有所增加、催化区域上升气流明显增强,温度提高;催化后40 min时雪的增长主要依靠其凝华增长、冰晶向雪的自动转化、雪和云滴之间的碰冻以及冰晶和雪之间的碰并;催化后200 min,催化云中各种微物理过程对雪的贡献高于自然云,催化前期消耗了过冷云水,此时云中雪和云滴之间的碰冻对雪的贡献非常微弱,雪的增长主要依靠凝华增长以及雪和冰晶的相互作用。  相似文献   

7.
台风眼壁的云结构与降水形成机制分析   总被引:1,自引:0,他引:1  
杨文霞  赵利品  邓育鹏  胡向峰 《气象》2011,37(12):1481-1488
使用带有详细微物理过程的ARPS模式,对台风韦帕(Wipha)进行三重嵌套细网格模拟,利用模式结果,对台风眼壁强降水中心的云结构和降水形成机制进行分析,结果表明:冰相微物理过程是启动和形成台风眼壁暴雨的主要降水形成机制。在9000~14000 m高空,云水在很低的温度下经均质核化产生冰晶,或经非均质核化形成云冰;冰晶通过凝华增长(psfi,贝吉龙过程)、雨水收集云冰产生雪(praci)和冰晶粘附雨水成雪(piacr)过程生长为雪;霰产生主要包括4个过程:冰晶接触雨水使其成霰(piacr)、雪撞冻云水使其成霰(psacr)、雨水收集云冰转化成霰(praci)或雨水冻结为霰(pgfr);霰粒子通过收集云冰干增长(dgaci),霰撞冻云滴增长(dgacw)等过程生长;霰融化(pgmlt)和雪融化(psmlt)成雨水后再通过碰并云水等暖云生长过程,最后形成雨水。霰过程的强弱在雨水形成机制中很重要。(29.5°N、121.8°E)和(28.3°N、120.4°E)强降水中心冰晶转化率没有太大差别,但是(29.5°N、121.8°E)强降水中心上空冰晶通过贝吉龙过程快速成长为雪和霰,霰粒子增长过程远远强于(28.3°N、120.4°E)强降水中心,低空又有较高的云水转化率,使降水粒子在暖云中继续快速生长,冷暖云过程的有利配置使(29.5°N、121.8°E)出现较强雨水转化率。  相似文献   

8.
使用中尺度数值模式(WRFV3.7.1)对发生在宁夏南部山区两次降雹天气过程的背景场特征、云宏微观结构以及云内微物理转化机制进行了数值研究。结果表明:该地区冰雹云形成的大气环境水汽含量较少,冰雹的发生主要依靠"上干下湿"的不稳定层结及午后局地加热效应。两次个例发生的环境水汽含量存在较大差异,导致两次雹云个例微物理结构演变特征不同。对数值模拟结果分析发现,宁南山区冰雹云中雪粒子含量较多,雹胚(霰粒)主要通过雪粒子转化而来。霰粒主要通过水汽凝华及碰并过冷云水增长。模拟云中冰雹形成高度相对较低,冰雹形成后主要通过收集过冷云水增长。除碰冻过冷云水外,对过饱和水汽的凝华也是雪、霰、雹粒子质量增长的一个重要来源。模拟得到该地区冰雹云中云雨自动转化过程较弱,雨水主要是通过雪、霰、雹粒子在下落过程中融化形成。雨水在下落过程中蒸发显著。  相似文献   

9.
2008年初江西中部冰雪风暴过程的数值模拟   总被引:2,自引:2,他引:0  
利用中国科学院大气物理研究所研制开发的三维对流云模式,对2008年2月1日江西省中部的一次冰雪风暴过程进行了数值模拟。模拟方案分方案A和方案B,方案A云中水物质包括水汽、云水、雨水、冰晶、雪、霰共6类,方案B云中水物质包括水汽、云水、雨水、冰晶、雪共5类。对比分析两种方案的模拟结果表明,模式微物理过程中不包括霰粒项模拟结果更接近实际情况,冰晶在雪产生的初始阶段起着主要作用,但以后时段风暴内的冰晶效应使风暴内过饱和水汽在雪片上的凝华增长过程中起着主要作用。  相似文献   

10.
利用WRF模式6种适合高分辨率且包含多种固态水成物粒子的云微物理参数化方案,分别对2012年5月16日江苏北部一次飑线过程进行数值试验,结果表明:LIN方案模拟的飑线回波反射率、强降水TS评分、结构和强度等均要优于其余5种微物理参数化方案。分析不同参数化试验结果中不同水成物粒子占比随时间的变化特征,并针对LIN方案采取敏感性试验和水成物转化微物理过程分析指出,在此次飑线过程中的各水成物粒子中,霰/雹粒子占比最大,是降水过程中最重要的粒子;地面降水直接来源是雨水,雨水主要来源于中层霰/雹粒子的融化,小部分来源于云水的自动转化;中层霰/雹粒子最主要来源是通过雨霰转化过程中的雨水撞冻冰雹微物理过程,其次是霰撞冻云水的微物理过程,而冰相物质雪晶和云冰的碰并、撞冻和自动转化过程微乎其微。  相似文献   

11.
CAMS复杂云微物理方案与GRAPES模式耦合的数值试验   总被引:8,自引:3,他引:5       下载免费PDF全文
CAMS复杂云微物理方案是混合相双参数方案, 包括11个云物理变量和31个云物理过程, 能够同时预报水成物的比质量和数浓度。通过在GRAPES非静力中尺度模式中增加预报量并修改相关程序后, 实现了二者的耦合, 耦合后模式运行稳定。选取2005年8月15—17日我国华北地区一次暴雨过程, 利用耦合后的模式进行48 h模拟试验, 同时还选取了GRAPES模式中其他3个比较复杂的微物理方案进行模拟, 着重分析了降水和水成物分布的模拟结果。研究结果表明: CAMS方案能够模拟出与实测相接近的雨带分布特征, 并且对降水演变的模拟结果与其他方案比较一致, 对暴雨中心位置的模拟有待改进。CAMS方案模拟的水成物垂直分布与其他方案相比具有相似的总体特征, 各相态粒子的量级和分布合理, 不同方案的结果在量值上有所差别。个例分析结果显示出CAMS方案对降水和水成物的分布能够合理描述。今后应通过更多个例进行更为精细的模拟试验, 对新方案进行检验。  相似文献   

12.
利用目前国际上最先进的中尺度WRF模式模拟热带气旋生成,网格分辨率从9 km增加到3 km,3 km网格中积云参数化方案不起作用,依靠微物理方案来模拟对流尺度系统特征,模式中热带气旋的生成过程变得迟缓。当低压扰动发展到一定程度后再加入3 km网格,生成过程有加快趋势。本研究针对该现象进行分析。结果表明:只用微物理方案使低层(950~700 hPa)风速的垂直切变减小,不利于对流发展;切变减小主要是由于动量垂直输送项的差异所致。在加入细网格的6 h内,低层对流尺度(减去区域平均)的动量垂直输送量平均增加了一倍,某些时刻达到了5倍以上;动量混合增加是由于微物理方案模拟的垂直速度增加所致。此外,只用微物理方案导致对流有效位能迅速被消耗。低层垂直切变和对流有效位能的减小都不利于对流发展,从而导致热带气旋生成发展过程迟缓。本研究表明,目前WRF中的微物理方案在模拟热带气旋生成过程中的对流发展时仍然存在问题。  相似文献   

13.
将中国气象科学研究院(CAMS)混合双参数云微物理方案用于中尺度天气模式WRF,开展了对2013年超强台风天兔(1319)的模拟,通过与台风最佳路径、强度及热带降雨测量卫星(TRMM)资料对比,分析CAMS云微物理方案在模拟台风中的适用性及云微物理过程对模拟台风天兔的影响机制。设计了3组敏感性试验:修改雪粒子质量和落速系数(EXP1),采用海洋性云滴参数(EXP2),同时修改雪粒子质量和落速系数并采用海洋性云滴参数(EXP3)。结果表明:EXP1和EXP3由于霰碰并雪速率的增加及减小的雪下落通量,导致雪含量显著降低,同时也减少了整体冰相物的含量;EXP2和EXP3模拟的台风眼区对流有效位能快速减小,再现了前期台风的快速增强过程,路径偏差也最小;各试验模拟的小时降水率总体偏强,EXP3的降水空间分布与实况更接近,明显降低雪粒子含量,并一定程度上改善模拟的台风路径、强度及降水分布等。该结果不但可为改进适用于台风的云微物理参数化方案提供思路,也可加深云微物理过程对台风影响的认识。  相似文献   

14.
Summary Seven different microphysical sensitivity experiments were designed with an objective to evaluate their respective impacts in modulating hurricane intensity forecasts using mesoscale model MM5. Microphysical processes such as melting of graupel, snow and cloud ice hydrometeors, suppression of evaporation of falling rain, the intercept parameter and fall speed of snow and graupel hydrometeors are modified in the existing NASA Goddard Space Flight Center (GSFC) microphysical parameterization scheme. We studied the impacts of cloud microphysical processes by means of track, intensity, precipitation, propagation speed, kinematic and thermodynamic vertical structural characteristics of hurricane inner core. These results suggest that the set of experiments where (a) melting of snow, graupel and cloud ice were suppressed (b) melting of snow and graupel were suppressed and (c) where the evaporation of rain water was suppressed all produced most intense storms. The major findings of this study are the interconversion processes such as melting and evaporation among hydrometeors and associated feedback mechanism are significantly modulate the intensity of the hurricane. In particular an experiment where the melting of graupel, snow and cloud ice hydrometeors was eliminated from the model parameterization scheme produced the most explosively intensified storm. In the experiment where rain water evaporation was eliminated from the model, it produced a stronger storm as compared to the control run but it was not as strong as the storms produced from absence of melting processes. The impact on intensity due to variations made in intercept parameters of the hydrometeors (i.e., snow and graupel) were not that evident compared to other experiments. The weakest storm was noted in the experiment where the fall speeds of the snow hydrometeors were increased two fold. This study has isolated some of the factors that contributed to a stronger hurricane and concludes with a motivation that the findings from this study will help in further improvement in the design of sophisticated explicit microphysical parameterization for the mesoscale non-hydrostatic model for realistic hurricane intensity forecasts.  相似文献   

15.
Summary A moderate snowfall event in North China is simulated using the high-resolution mesoscale model MM5. A fourfold-nest experiment, with a minimum horizontal grid size of 2 km, is run. In order to study the cloud microphysics processes associated with the snowfall, two experiments were conducted in two inner domains, one using the Goddard scheme (Goddard experiment), and the other using the Reisner scheme (Reisner experiment). The analysis focused on the comparison of the cloud microphysics processes which occurred in the experiments. It is shown that there is no implicit precipitation of cumulus parameterization in the domain of grid scale 18 km. The snowfall distribution patterns in the experiments are slightly different, but the microphysical characteristics and processes may have considerable differences between the two experiments: (1) The water substances in the cloud have cloud water, cloud ice and snow, but no rainwater and graupel in the Goddard experiment. However, the water substances in the cloud have cloud ice, snow, and graupel, but no cloud water and rainwater in the Reisner experiment. (2) The cloud ice mixing ratios in the Goddard experiment are larger than those in the Reisner experiment. (3) In the Goddard experiment, the dominant cloud microphysical processes include the growth of cloud water by the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow and the Bergeron process of cloud ice. In the Reisner experiment, the dominant cloud microphysical processes include the depositional growth of cloud ice, the conversion of cloud ice to snow, the deposition of snow, and the deposition growth of graupel. (4) There is only snowfall in the Goddard experiment. Meanwhile, there is ice fall, snow fall, and graupel in the Reisner experiment. But the ice fall and graupel in the Reisner experiment is very slight and can be ignored.  相似文献   

16.
利用耦合Morrison 2-mon(MOR)双参数微物理方案的中尺度天气研究与预报模式(WRF)中的单气柱模式,对热带暖池国际云试验(TWP-ICE)期间的个例进行数值模拟。通过与观测资料和云分辨率模式的模拟结果进行对比,检验MOR方案对热带对流云系的微物理特征的模拟能力。模拟结果显示:MOR方案能够较好地模拟出热带云系中液相和冰相水凝物的垂直分布以及随时间的演变特征。地表向下长波辐射和大气顶向外长波辐射的量级和时间演变趋势同观测也非常接近。对与冰晶和雪有关的云微物理特征分析之后发现:季风活跃期,冰晶主要的源汇项有凝华增长过程、沉降过程、冰晶向雪的自动转化以及冰晶被雪碰并的过程。由于冰晶主体位于温度低于―20℃的高空,因而它对雨水的形成主要是间接贡献。同时期雪的主要源汇项中,凝华增长和沉降过程占据着主导地位。雪的凝华过程消耗了大量的水汽,可能抑制了冰晶的增长。另外雪的融化过程非常强盛,是产生降水的重要因子。季风抑制期,冰相的微物理过程变得相对简单且整体削弱,以凝华升华和沉降过程为主。凝华凝冻核的数浓度(Ndep)的气溶胶敏感性试验表明:季风抑制期,高空的冰晶云的宏观和微观性质对凝华凝冻核数浓度的响应情况呈现显著的线性特征。冰晶的含量随着Ndep的增加而增加,反之降低。该时期微物理过程主要同冰晶有关,水分的分配较为简单,Ndep增加时,高空冰云中小冰晶粒子数目增多且云顶升高,使得大气顶部向外长波辐射(OLR)值减小,反之冰云主体中冰晶有效半径增加,高空的冰云更加透明,云顶更低,对 OLR值增加起促进作用。而季风活跃期,微物理过程复杂,冰晶云的宏微观特征对Ndep的响应表现出一定的不规律特征。  相似文献   

17.
WRF模式不同微物理过程对东北降水相态预报的影响   总被引:1,自引:0,他引:1  
为了研究不同微物理过程对中尺度模式降水相态预报的影响,利用中尺度模式WRF(V3.1)和NCEP再分析资料,采用WSM 6方案、Goddard方案和New Thompson方案等3种不同微物理过程参数化方案,对2006-2008年东北地区存在降水相变的11次降水过程进行了敏感性试验。通过对降水和云微物理特征影响的分析,了解不同方案间的预报差异。结果表明:不同微物理方案对降水落区和强度预报影响不明显,而降水相态对微物理参数化方案较为敏感,主要表现在对雨区和雨夹雪区预报影响显著。从总体预报效果来看Goddard方案表现较好。选用不同微物理参数化方案模拟的底层大气云微物理特征存在较大的差别,正是这种差别直接导致了降水相态预报间的差异。  相似文献   

18.
显式云物理方案的研究进展   总被引:4,自引:1,他引:4  
史月琴  楼小凤 《气象科技》2006,34(5):513-520
回顾了近年来显式云物理方案的研究进展。显式云方案主要有体积水方法和详细微物理方法(分档法)。体积水方法有单参数和双参数两种谱描述方法,根据模式预报变量和物理过程的不同,可以分为暖云方案、简单冰相方案和复杂冰相方案。详细的微物理方法由于预报变量繁多、计算量巨大而一般多应用于研究工作。不同的模式,有不同的显式云方案,并不是粒子分类越复杂模拟效果就越好,需要根据研究的重点、计算资源的许可选择使用不同的物理方案。物理过程参数化需要建立在理论和实验研究的基础上,因此应加强这方面的理论和实验研究,使物理参数化具有更坚实的物理基础。  相似文献   

19.
用多普勒雷达反射率调整模式大气的云微物理变量   总被引:5,自引:2,他引:5       下载免费PDF全文
一种简单云分析方案, 用于由多普勒天气雷达反射率反演中尺度大气模式初值分析中的云微物理变量(云水混合比和雨水混合比)和空气湿度变量(比湿),使模式积分初始场反映出观测空间的云微物理特征以及哪些空间位置上的大气处于饱和状态。应用于2002年6月梅雨期安徽省马鞍山市一次降水过程的临近数值预报试验结果表明,模式预报的大气综合反射率与雷达观测的回波图像相近,由云微物理变量变化表示的模式云系演变与雷达观测的回波图像一致, 伴随模拟的中小尺度云系, 模式大气能很快调整出合理的中小尺度流场辐散、辐合结构;它们明显好于模式初始场不引入雷达反射率时的结果,即这种方法对改进临近数值天气预报准确率是有效的。  相似文献   

20.
不同微物理方案对一次梅雨锋暴雨过程模拟的影响   总被引:6,自引:0,他引:6  
孙晶  楼小凤  史月琴 《气象学报》2011,69(5):799-809
中尺度模式中描述湿物理过程的方案主要有对流参数化方案和云微物理方案,当网格距达到可以分辨积云对流尺度时,云微物理方案对描述云和降水物理过程的作用将变得更为重要.利用GRAPES高分辨率中尺度数值模式对2007年7月7-9日中国梅雨锋暴雨过程进行了数值模拟,从降水量、雷达回波、水成物分布方面结合观测资料,分析了NCFP简...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号