首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
为了解贵州夏季降水异常与同期高、中、低层环流系统的异常有何关系,在1958-1997年贵州夏季降水中选出6个多、少雨年,与同期环流距平场进行合成分析,结果表明:在多、少雨年环境距平场具有明显不同的特征。贵州多雨年南亚高压较常年偏弱,西太平洋副热带高压较常年偏南偏强。在贵州少雨年,南压高压呈西弱东强的特征,西太平洋副热带高压较常年偏北偏强。  相似文献   

2.
贵州夏季降水异常的环流特征分析   总被引:2,自引:1,他引:2  
伍红雨  王谦谦 《高原气象》2006,25(6):1120-1126
利用美国NCEP/NCAR月平均高度及风场再分析资料和中国月平均降水资料,分析了贵州多、少雨年夏季环流的平均距平场特征.结果表明:贵州多、少雨年夏季环流具有明显的不同特征.多雨年南亚高压偏弱,西太平洋副热带高压较常年偏强,脊线明显偏南偏西,且影响贵州的印度西南季风、西太平洋副热带季风较常年也偏强,影响贵州的中、东路冷空气强.少雨年西太平洋副热带高压明显偏强,脊线较常年明显偏北,其它环流特征与多雨年相反.  相似文献   

3.
2006年夏季西南地区东部特大干旱及其大气环流异常   总被引:33,自引:1,他引:32  
李永华  徐海明  刘德 《气象学报》2009,67(1):122-132
利用1959-2006年西南地区东部20个测站的逐日降水资料、NCEP/NCAR再分析资料以及国家气候中心提供的环流特征量资料,分析了2006年夏季西南地区东部特大干旱的时空分布及其同期大气环流的异常特征.结果表明,2006年夏季西南地Ⅸ东部少雨时段从6月中旬初开始一直持续到9月上旬中后期,达80多天,其中7月下旬中期到9月上旬中期降水尤其稀少.西南地区东部区域6、7、8月及整个夏季(6-8月)降水都偏少,降水指数显示2006年是西南地区东部1959年以来夏季降水最少的年份.2006年夏季西南地区特大干旱与大气环流异常有很大的关系,中高纬度环流及西太平洋副热带高压、西风带环流、南亚岛压、低层流场、水汽输送以及垂直运动等都持续异常.西太平洋副高异常偏北且偏西和副高异常偏弱且偏东时,两南地区东部都日,能出现严重干旱,2006年夏季属于副高控制性高温伏旱.西太平洋副高偏强偏北偏西,同时伴随南亚高压偏强偏东,西南地区东部在副高控制下,盛行下沉气流,同时也抑制了向该地的水汽输送,再加上西风带环流以及中高纬环流配置不利于冷空气南下,因而2006夏季西南地区东部少雨干旱.青藏高原热源偏弱,菲律宾附近地区对流非常活跃,是引起2006年夏季西太平洋副商偏强偏北偏西的重要原因.  相似文献   

4.
2006年川渝地区高温干旱特征及其成因分析   总被引:27,自引:7,他引:27  
2006年夏季,四川、重庆发生了50年一遇的高温大旱.利用中国730站中川渝地区58个测站2006年1月1日~9月8日的逐日降水、日最高气温和NCEP再分析资料,探讨了这次高温干旱的特征及成因机理,重点分析了西太平洋副热带高压和大陆副热带高压的异常活动以及西风带与热带环流的特征.研究指出,东亚西风带扰动偏弱、偏北,青藏高原低涡活动减弱,使得川渝地区上空长时间受强大的副热带高压控制;2006年夏季副热带高压的加强和维持与菲律宾以东洋面及南海地区的对流加强、孟加拉湾地区降水异常增多导致的加热场异常密切相关.  相似文献   

5.
利用1960~2011年广西西北部16个气象观测站逐月降水资料、NCEP/NCAR再分析月平均资料、NOAA向外长波辐射资料和国家气候中心提供的环流特征量资料,分析了广西西北部地区以往盛夏干旱年的中高纬环流、西太平洋副热带高压和水汽输送特征,重点探讨了2011年盛夏(7~8月)广西西北部特大干旱大气环流的异常特征。结果表明,2011年是1960年以来广西西北部盛夏降水最少的年份。广西西北部2011年盛夏大气环流与以往盛夏干旱年明显不同的是,西太平洋副热带高压较常年异常偏弱偏东,脊线位置明显偏北,中高纬环流平直,乌拉尔山地区和东北亚区域没有明显阻塞高压形势,冷空气活动比常年弱;印缅槽活动较常年偏弱,由南向北的水汽输送明显偏弱,广西西北部上空存在有弱的水汽通量辐散,垂直运动和对流活动均较常年偏弱,这些环流特征均不利于产生降水,造成2011年盛夏广西西北部地区出现特大干旱。  相似文献   

6.
利用1951~2000年NCEP/NCAR逐日再分析资料计算了大气热源,并对夏季青藏高原东部大气热源异常和西太平洋暖池区大气热源异常对中国夏季降水的影响作了对比分析研究.结果表明,如果高原东部夏季大气热源显著偏强(偏弱),则长江流域地区的夏季降水显著偏多(偏少),而华南东部地区夏季降水偏少(偏多).菲律宾南部附近的热带西太平洋暖池区上空夏季大气热源显著偏强(偏弱)时,同期长江中下游地区偏涝(偏旱),而华南地区、江苏北部-山东南部则偏旱(偏涝).夏季青藏高原东部大气热源异常和热带西太平洋暖池区大气热源异常对中国夏季降水的影响是有差别的,中国的夏季降水受高原东部大气热源影响的显著范围要比受西太平洋暖池区大气热源影响的显著范围要大.无论是高原热源异常还是西太平洋暖池热源异常,东亚地区的大气环流都存在类似EAP型的遥相关波列.大气热源的异常是通过直接影响垂直运动场的异常,进而影响到我国的夏季降水的异常.夏季高原热源或西太平洋暖池热源偏强(偏弱)时,西太平洋副高的脊线比常年位置偏南(偏北).  相似文献   

7.
孟加拉湾热源对亚洲夏季风环流系统的影响   总被引:8,自引:5,他引:8  
利用 1951—2000年NCEP/NCAR再分析逐日及月平均资料和我国 160个测站 1951—2000年月降水量资料,计算了夏季大气热源气候分布,分析了夏季孟加拉湾地区热源年际异常及亚洲季风环流系统的响应,以及夏季孟加拉湾地区热源与中国夏季降水的年际关系。结果表明:夏季亚洲季风区最强的热源中心位于孟加拉湾东北部一带。当孟加拉湾热源异常强 (弱 )时,南亚高压偏西 (东 ),西太平洋副热带高压位置偏东(西);印度夏季风偏强 (弱),东亚热带季风偏弱 (强 )。孟加拉湾热源异常对南亚高压、南亚季风、副热带高压的影响显著,对东亚热带季风的影响不显著。夏季孟加拉湾热源与同期长江以南、华南东部部分地区降水呈明显负相关,而与西南到华南西部地区降水呈明显正相关。  相似文献   

8.
山东夏季降水异常的前兆信号特征   总被引:1,自引:2,他引:1  
利用山东省内1960~2003年40个观测站的夏季降水资料和NCEP/NCAP再分析资料,分析了山东夏季降水空间分布、时间尺度的演变特征以及山东夏季降水异常时大气环流、热带对流活动的异常特征,结果表明:山东夏季降水总体呈现由鲁南向鲁北递减的趋热,空间分布具有一致性.涝年的前期冬季极涡向东扩展,东亚大槽和东亚冬季风较常年偏强;旱年前期冬季极涡偏向西半球,东亚大槽和东亚冬季风较常年偏弱.涝年热带印度洋、南海至西太平洋地区对流增强,热带东太平洋地区对流减弱,西太平洋副热带高压位置偏北;旱年则相反.涝年前期冬季由于冬季风较强及低纬度地区冷涌活跃,加强了低纬地区的对流活动,增强了Hadely环流,加强了能量及水汽向中、高纬度地区的输运,从而引起山东降水增多.  相似文献   

9.
利用山东省内1960-2003年40个观测站的夏季降水资料和NCEP/NCAP再分析资料,分析了山东夏季降水空间分布、时间尺度的演变特征以及山东夏季降水异常时大气环流、热带对流活动的异常特征,结果表明:山东夏季降水总体呈现由鲁南向鲁北递减的趋热,空间分布具有一致性。涝年的前期冬季极涡向东扩展,东亚大槽和东亚冬季风较常年偏强;旱年前期冬季极涡偏向西半球,东亚大槽和东亚冬季风较常年偏弱。涝年热带印度洋、南海至西太平洋地区对流增强,热带东太平洋地区对流减弱,西太平洋副热带高压位置偏北;旱年则相反。涝年前期冬季由于冬季风较强及低纬度地区冷涌活跃,加强了低纬地区的对流活动,增强了Hadely环流,加强了能量及水汽向中、高纬度地区的输运,从而引起山东降水增多。  相似文献   

10.
夏扬  徐海明 《气象科学》2017,37(1):60-69
采用ERA-interim和NCEP CFSR逐日再分析资料以及长江中下游29个测站的逐日温度资料,分析了2013年7月23日-8月14日长江中下游地区夏季异常高温的特点、环流特征及成因。研究结果表明,2013年夏季高温期间西太平洋副热带高压较往年异常偏强,西太平洋副热带高压控制区内大范围异常下沉运动产生的大气绝热加热是高温形成的主要原因。同时,与强大西太平洋副热带高压相联系的异常强大反气旋环流使得长江中下游地区上空的水汽向东北方向大量输出,导致了该区域水汽含量的减少,致使到达地面的太阳短波辐射增加,这是高温形成的又一原因。进一步分析表明,2013年夏季海洋性大陆地区大气热源异常偏强,该地区大气热源的异常增强可能是导致2013年夏季西太平洋副热带高压异常偏强的主要原因。  相似文献   

11.
夏季青藏高原大气热源与西南地区东部旱涝的关系   总被引:14,自引:5,他引:9  
利用1959~2006年西南地区东部20个测站逐日降水量资料和NCEP/NCAR再分析月平均资料,分析了夏季青藏高原大气热源特征,指出了影响西南地区东部夏季旱涝的热源关键区域,并就关键区大气热源对该区域夏季旱涝的影响进行了诊断,得出了以下主要结论:西南地区东部夏季降水与高原主体东南部的热源变化关系密切,当该区域(该区域...  相似文献   

12.
The spatial-temporal features of the extremely severe drought and the anomalous atmospheric circulation in summer 2006 are analyzed based on the NCEP/NCAR reanalysis data, the characteristic circulation indices given by the National Climate Center of China, and the daily precipitation data of 20 stations in the east of Southwest China (ESC) from 1959 to 2006. The results show that the rainless period started from early June and ended in early September 2006 with a total of more than 80 days, and the rainfall was especially scarce from around 25 July to 5 September 2006. Precipitation for each month was less than normal, and analysis of the precipitation indices shows that the summer precipitation in 2006 was the least since 1959. The extremely severe drought in the ESC in summer 2006 was closely related to the persistent anomalies of the atmospheric circulation in the same period, i.e., anomalies of mid-high latitude atmospheric circulation, western Pacific subtropical high (WPSH), westerlies, South Asian high, lower-level flow, water vapor transport, vertical motion, and so on. Droughts usually occur when the WPSH lies anomalously northward and westward, or anomalously weak and eastward. The extreme drought in summer 2006 was caused by the former. When the WPSH turned stronger and shifted to the north and west of its normal position, and the South Asian high was also strong and lay eastward, downdrafts prevailed over the ESC and suppressed the water vapor transfer toward this area. At the same time, the disposition of the westerlies and the mid-high latitude circulation disfavored the southward invasion of cold air, which jointly resulted in the extremely severe drought in the ESC in summer 2006. The weak heating over the Tibetan Plateau and vigorous convective activities over the Philippine area were likely responsible for the strong WPSH and its northwestward shift in summer 2006.  相似文献   

13.
In previous statistical forecast models, prediction of summer precipitation along the Yangtze River valley and in North China relies heavily on its close relationships with the western Pacific subtropical high (WPSH), the blocking high in higher latitudes, and the East Asian summer monsoon (EASM). These relationships were stable before the 1990s but have changed remarkably in the recent two decades. Before the 1990s, precipitation along the Yangtze River had a significant positive correlation with the intensity of the WPSH, but the correlation weakened rapidly after 1990, and the correlation between summer rainfall in North China and the WPSH also changed from weak negative to significantly positive. The changed relationships present a big challenge to the application of traditional statistical seasonal prediction models. Our study indicates that the change could be attributed to expansion of the WPSH after around 1990. Owing to global warming, increased sea surface temperatures in the western Pacific rendered the WPSH stronger and further westward. Under this condition, more moisture was transported from southern to northern China, leading to divergence and reduced (increased) rainfall over the Yangtze River (North China). On the other hand, when the WPSH was weaker, it stayed close to its climatological position (rather than more eastward), and the circulations showed an asymmetrical feature between the stronger and weaker WPSH cases owing to the decadal enhancement of the WPSH. Composite analysis reveals that the maximum difference in the moisture transport before and after 1990 appeared over the western Pacific. This asymmetric influence is possibly the reason why the previous relationships between monsoon circulations and summer rainfall have now changed.  相似文献   

14.
夏季逐月东亚高空急流异常对我国降水的影响   总被引:5,自引:1,他引:4       下载免费PDF全文
根据1981~2010年NCEP/DOE再分析资料与中国160站降水资料,利用统计学、物理量诊断等方法,探讨夏季东亚季风环流系统重要成员——东亚高空西风急流位置、强度逐月变化与我国降水的关系。分析表明:6~8月东亚高空西风急流比各自气候态位置偏南(北)时,易造成6月华南、江南地区降水、7月江淮流域降水以及8月长江中上游地区降水偏多(少)。本文重点分析2010年6月、2007年7月及2006年8月东亚高空西风急流位置异常时东亚高、低纬度环流特征及其对我国降水影响的物理成因。研究发现:2010年6月东亚高空西风急流稳定在35°N以南。急流轴南侧(北侧)为强辐散(辐合)距平,相应低层辐合(辐散),造成江南、华南地区从低层至高层的强上升运动,配合整层偏西水汽通量距平,为该地区持续性降水提供了有利的动力和水汽条件;2007年7月东亚高空急流位置偏南、强度偏弱,急流月内尺度扰动偏强,使得东亚中高纬度冷空气活动频繁,造成淮河流域出现持续性暴雨;2006年8月东亚高空西风急流位置持续偏北、强度偏强,有利西太平洋副高西伸、北抬,我国四川—重庆地区受副高控制,出现了极端高温干旱天气。  相似文献   

15.
El Ni?o对东亚夏季风和夏季降水季节内变化的影响   总被引:3,自引:0,他引:3  
基于1979~2012年候平均再分析资料,合成分析了El Ni?o对东亚夏季风和夏季降水季节内变化的影响。结果表明,在El Ni?o衰减年夏季,西太平洋副热带高压(副高)明显偏强,位置偏向西南。副高的这种异常特征随夏季的季节进程有明显变化,初夏异常较弱,盛夏期间异常达到最强。此外,根据东亚夏季风降水呈现阶段式北进的特征,将夏季分为华南前汛期、江淮梅雨期、华北和东北雨期以及华南后汛期来分析东亚夏季风和降水的季节内变化。在上述各个时期,大气对流层低层表现为一致的环流异常型,副高及其以南区域为异常反气旋,其北部为异常气旋。这种异常环流型加强了副高南部偏东风及其北部偏北风,增强了热带水汽输送和高纬度地区冷空气的入侵,二者结合造成主汛期地区降水增加。需要强调的是,上述环流异常型随东亚夏季风逐步向北推移,导致东亚各地区的主汛期降水增加,非主汛期降水减少,降水分布更为集中。  相似文献   

16.
海温异常对东亚夏季风强度先兆信号的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
利用ERA-Interim再分析资料、NOAA海温资料、CMAP格点降水资料和中国气象站降水资料,通过合成、相关和回归分析等方法研究了1979—2012年东亚夏季风强度与其先兆信号的关系,并分析了热带海温异常的可能影响。研究表明:东亚夏季风先兆指数反映了2月200 hPa纬向风距平的主要模态特征 (EOF1),前冬热带中东太平洋海温偏低 (高),2月亚洲地区西风急流位置偏北 (偏南),东亚夏季风先兆指数偏强 (弱)。前期热带海温异常对东亚夏季风强度有明显影响,前冬热带中东太平洋海温偏低 (高) 有利于东亚夏季风偏强 (弱)。2月亚洲中纬度地区纬向风异常特征在春季不能持续,先兆信号与东亚夏季风强度的联系主要源自热带海洋。  相似文献   

17.
东亚夏季环流变化对中国夏季降水的年际变化有重要影响,因此需要进一步理解季节预测模式对东亚夏季环流的预测能力。利用1991~2013年美国国家环境预测中心(NCEP)、中国气象局国家气候中心(NCC)和日本东京气候中心(TCC)的三个季节预测模式(CFS V2、BCC_CSM V2和MRI-CGCM)以及NCEP/NCAR再分析资料,定量评估了模式对东亚夏季风(EASM)和夏季西太平洋副热带高压(WPSH)强度的预测能力。在此基础上,分析了模式预测的EASM和WPSH对热带海温异常的响应能力,以及ENSO事件对EASM和WPSH预测的影响,阐述了预测误差产生的原因。结果表明:整体而言,三个模式对EASM和WPSH的预测技巧较高,但TCC模式对WPSH的预测技巧相对较低。三个模式预测的850 hPa风场在西北太平洋存在一个异常气旋,使得预测的EASM偏强和WPSH偏弱。同时,二者的年际变率整体比观测小。三个模式预测的EASM和WPSH对热带海洋海温异常的响应随季节演变特征与观测比较接近,但NCEP模式和TCC模式预测的EASM对前期热带太平洋和前期、同期热带印度洋的海温异常响应要强于观测,NCC模式预测的EASM对前期和同期的热带太平洋的海温异常响应明显比观测强。此外,三个模式预测的WPSH对前期和同期的热带太平洋、热带印度洋和热带大西洋的海温异常响应明显强于观测。三个模式预测的EASM和WPSH在ENSO年的平均绝对误差(MAE)整体而言要比正常年的小很多,NCEP模式和NCC模式预测的EASM和WPSH的MAE在La Ni?a年和El Ni?o年差别不大,而TCC模式预测的EASM和WPSH的MAE在El Ni?o年比在La Ni?a年大很多,表明ENSO事件是东亚夏季环流重要的可预报源。  相似文献   

18.
刘芸芸  王永光  柯宗建 《气象》2021,(1):117-126
2020年夏季我国天气气候极为异常,全国平均降水量为373.0 mm,较常年同期偏多14.7%,为1961年以来次多;季节内阶段性特征显著,6—7月多雨带主要位于江南大部—江淮地区,8月则主要在东北、华北及西南地区,致使2020年夏季雨型分布异常,不是传统认识上的四类雨型分布。通过对同期大气环流和热带海温等异常特征分析发现,6—7月,欧亚中高纬环流表现为“两脊一槽”型,东亚副热带夏季风异常偏弱,西太平洋副热带高压(以下简称西太副高)较常年同期显著偏强、偏西,第一次季节性北跳偏早,第二次北跳明显偏晚,且表现出明显的准双周振荡特征;使得来自西北太平洋的转向水汽输送偏强,并与中高纬不断南下的冷空气活动相配合,水汽通量异常辐合区主要位于长江中下游地区,导致江淮梅雨异常偏多。热带印度洋持续偏暖对维持6—7月西太副高偏强偏西及东亚夏季风异常偏弱起到了重要作用。8月,欧亚中高纬环流调整为“两槽一脊”型,蒙古低压活跃;西太副高也由前期偏纬向型的带状分布转为“块状”分布,脊线位置偏北;沿西太副高外围的异常西南风水汽输送延伸至华北—东北南部,形成自西南到东北的异常多雨带,与6—7月江淮流域降水异常偏多的空间分布有明显不同。异常的热带大气季节内振荡活动是导致8月中低纬大气环流发生调整的重要原因。  相似文献   

19.
春季青藏高原大气热源与长江中下游盛夏高温的关系   总被引:1,自引:0,他引:1  
利用1961—2013年长江中下游地区盛夏(7—8月)日极端最高气温和NCEP/NCAR再分析逐日资料,分析了春季(4—5月)青藏高原大气热源特征,找到了影响长江中下游盛夏高温的热源关键区域,并就关键区大气热源对长江中下游盛夏高温的影响进行了诊断。结果表明:春季青藏高原主体中南部大气热源与长江中下游盛夏高温关系密切,当该区域大气热源偏弱(强),长江中下游盛夏高温日数偏多(少)的可能性大。当春季青藏高原关键区大气热源偏弱(强)时,春季南海到西太平洋暖池对流偏强(偏弱),南海上空为气旋性(反气旋性)异常环流,西太平洋副热带高压偏东(西),有利于南海夏季风爆发偏早(晚),往往有利于盛夏西太平洋副热带高压位置偏北(南),从而导致长江中下游盛夏高温日数偏多(偏少)。春季青藏高原关键区大气热源可以作为长江中下游盛夏高温的一个前期预报因子。  相似文献   

20.
The anomalous behavior of the western Pacific subtropical high (WPSH) in El Niño developing summer is studied based on the composite results of eight major El Niño events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to El Niño forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号