首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了提高风电场风速预报和功率预测的精度和准确率,并考虑风机测风数据的不稳定因素,以多年服务的内蒙古中部某风力发电场A为研究区,在勘察风电场地形及风机布局后,按照季节、风向进行风机间风速时空相关性分析,划分出风机轮毂高度风速高相关为典型特征的风机网格分类片区,采用卡尔曼滤波方法,通过直接和间接两种订正方案,分别进行风机片区风速订正。结果表明:风速高相关风机片区的划分,对于提高风电场风速预报及功率预测精度和准确率具有一定作用,利用风电场区测风塔梯度观测风速,对风机片区进行间接订正,可有效改善数值模式预报风速,15个片区类型下相关系数由0.18~0.72提高至0.67~0.91,误差绝对值由1.6~2.9 m·s-1降低至1.0~1.5 m·s-1。  相似文献   

2.
为降低风电场短期预报风速误差,减少风电场短期风功率偏差积分电量,提高风电场发电功率预测准确率,分季节研究了相似误差订正方法对ECMWF单台风机预报风速的订正效果。结果表明:相似误差订正后不同风机预报风速的误差差距减小;预报风速的平均绝对偏差和均方根误差明显降低,其中夏季和秋季华能义岗风电场两个指标降低幅度均超过0.1 m/s、会宁丁家沟风电场均超过0.2 m/s;订正风速削减了原始预报的极值,可反映大部分时段实况风速3 h内的趋势变化,个别时段订正风速与实况趋势相反;订正后预报风速在风功率敏感区的平均绝对偏差明显降低,华能义岗风电场四季降低幅度在0.112~0.242 m/s之间、会宁丁家沟风电场四季降低幅度在0.131~0.430 m/s之间,有效降低了原始预报误差带来的短期风功率偏差积分电量扣分值;订正风速较原始预报更多分布在风功率敏感区。该方法实际应用灵活,对提高风电场短期预报风速准确率有可观的效果,并可有效减少短期风功率偏差积分电量考核。   相似文献   

3.
决策树技术分析气象因子对电力负荷预测的影响   总被引:1,自引:1,他引:0  
高霞  曾新  马骋 《气象》2008,34(3):106-111
基于决策树技术,对气象因子和日电力负荷的最高、最低值、平均值进行联合建模,量化气象因子对电力负荷的影响,从而确立一种有效的基于气象因子的短期电力负荷预测方法,用以生成日特征负荷决策树预测模型.通过该模型,结合预测日的气象、属性(日期、节日等)等信息,可进行日特征负荷的预测.预测结果表明,该模型具有自动化程度高、预测结果准确率高的特性.以河北省保定市气象数据和电力负荷数据为例进行了训练和预测,研究结果证明这种方法能较大地提高日电力负荷预测的精度.  相似文献   

4.
张颖超  肖寅  邓华 《气象》2016,42(4):466-471
风速预测是风电场风功率预测的基础,其准确度严重影响着风电场的运行效率。为了提高短期风速预测的准确性,本研究采用了WRF中尺度数值模式,对我国东部沿海某风电场的风速进行预报。在此基础上,利用极限学习机算法(ELM)对WRF模式预报的风速进一步订正。实验结果表明,WRF模式对风速、风向等气象要素有着较好的回报效果,利用ELM算法对WRF模式预报风速进行订正后,预报风速的误差进一步减小,相对均方根误差和相对平均绝对误差降低了20%~30%。与其他的智能算法(BP神经网络、SVM算法)对比分析后得出,ELM算法对WRF模式预报风速具有较好的订正效果,能够有效提高风速预报准确率。  相似文献   

5.
风电功率预测中最重要的因子是风速,准确的风速预测是风电功率预测的前提和基础。为了提高短期风速预测的准确性,本研究采用WRF模式,对我国上海崇明吕四风电场的风速进行预报。在此基础上,利用PCA-RBF算法结合WRF模式预报风向、气温、气压等气象要素对预报风速进一步订正。实验结果表明,利用PCA-RBF算法对WRF模式预报风速进行订正后,预报风速的误差进一步减小,相对均方根误差降低20%~30%,相对平均绝对误差降低15%~20%。与其他智能算法(BP算法、LSSVM算法)对比分析后得出,PCA-RBF算法对WRF模式预报风速具有较好的订正效果,能够有效提高风速预报准确率。  相似文献   

6.
基于数值模拟和统计分析及智能优化的风速预报系统   总被引:2,自引:0,他引:2  
风速预报是风力发电研究中的关键问题,也是一个十分困难的问题,其预测、评估技术还有待进一步提高.在预测短期风力(提前48~72 h对每小时的风速进行预测)时,通常采用数值天气预报模型进行预测.然而,初始扰动和模式物理过程的不确定性会影响气象数值预报的精度.将为数值天气预报模式提出一种新的后处理优化方法作为主要的思路,利用数据挖掘得到的关联规则来优化气象数值预报的结果,在中尺度模式WRF对风电场风速进行预报的基础上,将模式预测与统计分析及智能优化算法相结合,针对中国风电场的气候特征,利用一种新的修正模式误差的方法,极大地提高了风电场风速预报精度,提出了适合中国风力发电场的有效风速预报系统方案.  相似文献   

7.
利用贵州省普安磨舍光伏电站2020年逐15 min的光伏发电功率、辐射资料与气象站资料,对光伏发电功率变化特征及影响光伏发电功率的气象因子进行分析,建立了光伏发电功率的预测模型,并利用CFSv2模式资料开展月内预测检验。结果表明:光伏电站发电功率呈现早晚低、中午高的单峰型日变化特征,其中春季发电功率值最大,夏季次之,冬季最小。影响光伏发电功率最关键的气象因子为总辐射和日照时数,其相关系数均在0.9以上。5种组合的线性回归预测模型检验结果显示,利用平均气温、最高气温、日较差建立的预测模型预测效果最好,而利用单一气象因子的预测效果最差。为增加光伏发电功率的预测准确率,可根据预测服务需求,并用延伸期模式资料开展光伏发电功率滚动订正预测。  相似文献   

8.
风速预测是风电场运行和风电并网过程中的关键技术之一。由于风速序列呈现出明显的间歇性和波动性,使用单一模型进行时预测难以取得满意的结果。本文发展了三种混合多步预测模型,并将他们与已有的风速预测模型相比较。这三个模型结合了小波分解、布谷鸟搜索算法和小波神经网络,分别记为CS-WD-ANN,CS-WNN和CS-WD-WNN。研究采用中国山东省两个风电场的实测数据进行模拟试验和模型比较,结果显示CS-WD-WNN表现最佳,具有最低的统计误差。  相似文献   

9.
马文通  朱蓉  李泽椿  龚玺 《气象学报》2016,74(1):89-102
复杂地形导致近地层风场时空变化大,是影响风电场短期风电功率预测准确率的重要因素。为此,基于中尺度数值预报模式和微尺度计算流体力学模式,建立了风电场短期风电功率动力降尺度预测系统。该系统由中尺度数值预报模式、微尺度风场基础数据库、风电功率预测集成系统组成,能够预测复杂地形风电场中每台风电机组未来72 h逐15 min的发电量。提高了复杂地形风场发电功率预测准确率,同时还可以在上报电网的风电功率预测结果中考虑运行维护计划和限电等因素对实际并网功率的影响。2014年7月-2015年1月的业务预测试验表明,风电场短期风电功率动力降尺度预测系统的月预测相对误差均小于0.2,满足中国国家电网对风电功率预测误差和时效性的业务要求。动力降尺度技术不受具体项目地形复杂程度和历史观测数据样本量的限制,可以在新建风电场中推广应用,具备实际的可操作性。   相似文献   

10.
通过分析位于复杂地形的南湫、黑崖子和干河口风电场测风塔70 m高度的风速、风向分布特征及风速预报的误差特性,基于卡尔曼滤波方法建立了预报风速的订正模型,对预报风速误差进行了订正。结果表明,南湫、黑崖子和干河口风电场的有效风速时数占全年风速时数的百分比分别达90. 9%,85. 06%和82. 93%;各风电场有效风速时数存在显著的时间差异,夏、秋季有效风速时数最大;南湫、黑崖子和干河口分别可达29. 65%,27. 19%和23. 24%;风速日变化特征差异明显,夏季南湫、黑崖子和干河口风速日变化分别呈多峰多谷(或双峰双谷)、单峰单谷、双峰单谷的分布特征;夏到秋季,南湫主导风向为东南风,黑崖子由偏东风转换为偏西风,干河口主导风向稳定为东风或偏东风。风速阵性特征有明显的季节差异,9月黑崖子、干河口风速的阵性变化较6月强,南湫风速的阵性变化6月比9月强。北京快速更新循环数值预报系统(BJ-RUC)对复杂地形风电场风速预报能力存在局限性,主要表现在预报风速的阵性变化相对较小、风速偏大;经卡尔曼滤波方法订正后,数值模式对风速的阵性预报能力增强,预测风速威布尔分布的形状参数和尺度参数逼近实况风速的分布参数,实况风速和预测风速相关系数最大可提高约15%;预报风速的绝对误差、均方根误差也得到了改善,可降至1. 30 m·s~(-1)和1. 66 m·s~(-1)。  相似文献   

11.
利用辽宁和吉林省24座测风塔风速观测资料,应用线性回归方法对高分辨率中尺度模式近地层风速预报产品进行订正。首先通过4组不同的订正实验分析训练样本长度、样本滚动方式等对订正效果的影响,确定单点订正最佳方案,并综合线性方法在东北地区不同下垫面条件下的适用性;然后应用24座测风塔已确定的单点订正关系,尝试区域风速的平面订正,并基于剩余23座测风塔资料对全场订正效果进行评估。结果表明:训练样本的长度对订正效果影响较明显,在东北地区训练样本长度取20 d效果最佳;当训练样本长度取最优天数时,滚动系数的订正效果与固定系数的订正效果基本一致;各种下垫面通过线性订正均能取得较明显提高,其中丘陵地区效果最明显,通过订正均方根误差整体降低1.61 m·s-1,平原地区为0.95 m·s-1,沿海地区为0.91 m·s-1;平面风速订正实验显示,订正关系平面外推可取得明显的订正效果,全场平均绝对误差降低0.20 m·s-1,该方法可为订正资料匮乏区域的预报提供参考。  相似文献   

12.
吴泓  李永  郑清华  盛丽 《气象科学》2011,31(1):113-118
通过L波段系统与GPS同步比对,分析了我国现行高空测风算法在一般情况下造成的误差、在特殊情况下对风的变化可能产生的错误判断或无法判断。目前高空探测系统实现了自动化,秒尺度坐标数据采样密度和计算机完成计算的条件下,计算方法应该也可以作相应的改进。本文以WMO的相关技术要求为标准,探讨了提高高空风探测的空间分辨率、计算精度和精细化描述风垂直变化的可能与具体实施的途径,进一步提高高空风测量结果的准确度。  相似文献   

13.
风向的统计方法研究   总被引:5,自引:0,他引:5       下载免费PDF全文
在核安全分析和环境影响评价中,必须使用到的是小时气象数据。对自动气象站小时风向的计算方法和小时数据如何统计,地面气象规范中和核安全导则中还没有定论,因此本文对小时风向统计方法展开讨论。目前小时风向值的计算方法有算术平均法、滑动平均法、矢量平均法和频率最高法,针对算术平均法和滑动平均法对经过0°的风向统计容易出现误差,本文提出对此的修正方法并对4种计算方法进行了比较。结果表明:文中过零风向修正方法简便准确,小时数据统计方法为正点前10min数据时,修正算术平均法更可靠,但该方法对风速为零时的判断容易出现误差,因此在小风、静风频率高的地方推荐矢量平均法。关于小时数据的划分方法,美国核管会RG1.23与我国核安全导则及地面气象规范中的规定不同,因此文中利用实测资料对不同小时数据统计方法所得结果比较,分析表明,取整点前或其他时段的10min和15min的数据进行平均的风向相关矩阵一致性为97.87%;取4个15min平均值的平均或6个10min数据平均值的平均作为小时值的风向相关矩阵一致性为99.96%,这两种统计方法与取10min和15min的一致性为86.00%,相对较差;取60min时段的平均值作为小时值则与其余方法一致性最差。  相似文献   

14.
基于2016年2月和8月江西宜春风廓线雷达探测水平风场数据,分别利用扩展经验正交函数(EOF)分析重构法和高斯滤波法对其进行质量控制。结果发现,相比原始观测风场,EOF分析重构法和高斯滤波法均能有效过滤风廓线雷达原始风场的高频脉动。两种方法对比分析发现,对于空间尺度的瞬时扰动,EOF分析重构法质控效果优于高斯滤波法;对于时间尺度的瞬时扰动,高斯滤波法质控效果优于EOF方法。  相似文献   

15.
The characteristics of wind speed and wind direction in the boundary atmospheric layer measured at the meteorological station in Akhtopol (Bulgaria) are presented. The measurements were carried out with the Scintec sodar and MK-15 automatic meteorological station. The sodar measurement data on wind parameters at different heights in different months are presented as well as the frequency of inshore and offshore wind directions, that enables to trace the intensity of the breeze circulation. The frequency of calms and wind speeds at the heights of 50, 100, and 200 m according to gradations for different months and the probability of wind of various speeds depending on the direction are also given. The breeze front characteristics in June–September of 2009 are computed from the speed and direction of surface wind measured with the acoustic anemometer of MK-15 complex.  相似文献   

16.
风廓线雷达中风切变分析方法的初步研究   总被引:3,自引:1,他引:2       下载免费PDF全文
胡明宝  肖文建 《气象科学》2010,30(4):510-515
在风廓线雷达连续输出的风场时间高度显示图上,尝试进行风场的流线分析和风切变值等值线分析,以便用于识别强烈风切变区。在风场变化比较均匀时,分析出的线形分布比较平缓,而在风场变化比较剧烈的区域,风向等值线、垂直风切变等值线和流线三者一致表现出了汇聚特点,线形的分布也异常地密集,分析结果直观地反映出了风场分布的特征和危险性风切变区域,该结果有助于风切变自动识别方法的研究。  相似文献   

17.
WRF模式对福建沿海风电场风速预测的效果分析   总被引:2,自引:1,他引:1  
杨光焰  吴息  周海 《气象科学》2014,34(5):530-535
在WRF模式中选取不同的边界层、近地面层以及陆面过程参数化方案,设计了4种不同物理过程参数化方案,组合模拟福建沿海某测风塔站2010年1月1—11日和7月1—11日的逐时风速,将数值模拟结果和同期测风塔观测数据进行对比,以寻求最佳参数化方案。经分析比较,采用MYJ边界层方案,Monin-Obukhov近地面层方案以及Noah陆面过程方案的方案2模拟效果最好。使用该方案对2010年1月和7月的风速进行模拟,按不同风速级别分别对数值模拟结果进行对比分析,结果表明:方案2对6~15m/s风速模拟的平均相对误差在20%左右,能够满足风电预测的精度需求;而对0~6m/s风速模拟的误差相对较大,这可能是由于模式地形分辨率不够精细以及风塔所处海陆交界处的特殊位置,使低风速容易受地面扰动以及海陆气流影响所致。  相似文献   

18.
风电场风速数值预报的动态修订方法的探讨   总被引:1,自引:1,他引:0       下载免费PDF全文
针对风电场风功率预测所需的定点、逐时风速预报,对利用中央气象台发布的MM5格点输出的数值预报风速插值到福建沿海某个风电场测风塔高度的预报结果进行误差分析,发现由于海陆交界的特殊下垫面等原因,存在一定的系统误差;根据误差的后延相关性和测风塔实时发回的气象资料,探讨了利用前期误差观测值和测风塔湍流指标对MM5数值预报风速进行动态修订的方法,建立了订正值方程,结果表明,订正后的预报风速平均绝对误差降低31%~54%,有效提高了预报精度。  相似文献   

19.
Some ambiguities and omissions in the Phillips'-Miles' theory of wind wave generation are discussed. The details of the theory are revised on the basis of the coupled system of equations for water and air. The results are then applied to a consideration of the statistical properties of the problem. The wavenumber spectrum, corresponding to this model of wind wave generation, is different from the spectrum corresponding to the theories proposed by Phillips (1966) and Miles (1960). The well-known qualitative physical conclusions of the Phillips'-Miles' theory remain unchanged and therefore are not discussed. Only a formal treatment of the problem is presented.  相似文献   

20.
From wind profile and wave measurements performed during the JONSWAP II experiment, relations between the dimensionless profile slope and the significant wave height are derived. It is shown that the wind profile is distorted by the waves especially in the vicinity of the water surface. The wave influence on the profile seems to be restricted to heights below about three wave heights. Above this level, the dimensionless profile slope is an approximately constant value corresponding to a drag coefficient of about 1.15 × 10–3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号