首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.  相似文献   

2.
By analysing records made in the northern taiga forests of the Lapland Reserve (Kola Peninsula, Russia) during 1930–1998, we unexpectedly discovered a decline in the length of the snow-free and ice-free periods by 15–20 days due to both delayed spring and advanced autumn/winter. Respective seasonal temperatures best explained the dates of all phenological phases: 1 °C shift in temperature was approximately equal to 2–5 day shift in phenology. However the phenological shiftsduring the observation period are much larger than could be expected from the slight (0.56 °C) drop in temperatures during August–September, suggesting that the biotic effects of a very slight cooling have been enhanced by one or more unknown factors. Although emissions of sulphur dioxide from the nickel-copper smelter at Monchegorsk may have contributed to the observed trend (via changes in regional radiative budget), we found no evidence of direct pollution impact on dates of birch autumnal coloration or birch leaf fall, which exhibited the largest (22 days) shift between 1930 and 1998. The detected phenological trends agree with an increase in winter (snow) precipitation in the study area by 44%; however, effects of precipitation on any of the investigated phenological phases were far from significant. Our results highlight the importance of phenological records for the assessment of past regional environmental changes, and demonstrates that the prediction of even the simplest biotic responses to the Global Changes requires a profound understanding of the interactive impact of abiotic factors on the ecosystem.  相似文献   

3.
Summary The interannual and decadal scale variability in the North Atlantic Oscillation (NAO) and its relationship with Indian Summer monsoon rainfall has been investigated using 108 years (1881–1988) of data. The analysis is carried out for two homogeneous regions in India, (Peninsular India and Northwest India) and the whole of India. The analysis reveals that the NAO of the preceding year in January has a statistically significant inverse relationship with the summer monsoon rainfall for the whole of India and Peninsular India, but not with the rainfall of Northwest India. The decadal scale analysis reveals that the NAO during winter (December–January–February) and spring (March–April–May) has a statistically significant inverse relationship with the summer monsoon rainfall of Northwest India, Peninsular India and the whole of India. The highest correlation is observed with the winter NAO. The NAO and Northwest India rainfall relationship is stronger than that for the Peninsular and whole of India rainfall on climatological and sub-climatological scales.Trend analysis of summer monsoon rainfall over the three regions has also been carried out. From the early 1930s the Peninsular India and whole of India rainfall show a significant decreasing trend (1% level) whereas the Northwest India rainfall shows an increasing trend from 1896 onwards.Interestingly, the NAO on both climatological and subclimatological scales during winter, reveals periods of trends very similar to that of Northwest Indian summer monsoon rainfall but with opposite phases.The decadal scale variability in ridge position at 500 hPa over India in April at 75° E (an important parameter used for the long-range forecast of monsoon) and NAO is also investigated.With 4 Figures  相似文献   

4.
This study analyzes the temporal change of Normalized Difference Vegetation Index (NDVI) for temperate grasslands in China and its correlation with climatic variables over the period of 1982–1999. Average NDVI of the study area increased at rates of 0.5% yr−1 for the growing season (April–October), 0.61% yr−1 for spring (April and May), 0.49% yr−1 for summer (June–August), and 0.6% yr−1 for autumn (September and October) over the study period. The humped-shape pattern between coefficient of correlation (R) of the growing season NDVI to precipitation and growing season precipitation documents various responses of grassland growth to changing precipitation, while the decreased R values of NDVI to temperature with increase of temperature implies that increased temperature declines sensitivity of plant growth to changing temperature. The results also suggest that the NDVI trends induced by climate changes varied between different vegetation types and seasons.  相似文献   

5.
Summary Large-scale climate variability largely affects average climatic conditions and therefore is likely to influence the phenology of plants. In NW-Europe, the North Atlantic Oscillation (NAO) particularly influences winter climate and, through climate interactions on plants, flowering time of all tree species. In Denmark, like in many other NW-European countries, flowering of most tree species has become earlier since the end of the 1980’s. To quantify a possible relation between NAO and flowering time of tree species, two sources of phenological information from the Copenhagen area (Denmark) were analysed, i.e. pollen counts of the genus Betula and observed first bloom dates of Prunus avium. The Winter NAO explained 29 and 37% of the variation of monthly mean temperature for February and March, respectively. The influence of temperature on flowering time was up to 56% to 60% for the February–April mean. A direct correlation of Winter NAO-index and flowering time also revealed a clear relation but the time of influence was earlier (December to February). This was shown to be the likely result of a combination of direct and time-lagged effects of the NAO on air and sea surface temperature. The NAO signal is apparently stored in the North Sea and then influences temperature east up to the Baltic States. It is shown that Denmark is right in the centre of direct and time-lagged effects of the NAO. This offers the possibility of using the NAO-index for predicting flowering time of Prunus avium. The beginning of pollen flow appears to be influenced too much by short-term perturbations of the climate system decreasing the value of the NAO-index for prediction. However, it indicates a close relationship between natural climate variability, measured by the NAO index, and flowering time of tree species for Denmark.  相似文献   

6.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

7.
Summary Spatial and temporal patterns of trends in the diurnal temperature ranges (DTRs) of the 70 stations and the role of maximum and minimum temperatures on the year-to-year variability and the long-term trends of the DTRs in Turkey have been investigated for the period 1929–1999. The principal results of the study are as follows:(i) The daytime maximum temperatures have shown weak warming and cooling in comparison with significant warming of the night-time minimum temperatures in many regions of Turkey and in most seasons. (ii) The DTRs have significantly decreased at most of the urbanised and rapidly urbanising stations throughout the seasons except partly in winter, without showing an apparent north/south (west–east) and land/sea gradient. (iii) Annual and seasonal DTRs of some stations have shown significant increasing trends. Nevertheless, the spatial distribution of significant increasing trends in the DTR series is geographically incoherent across the country in all seasons and annually, as compared with significantly decreased DTRs. (iv) Autumn and summer DTRs have decreased generally at a higher rate than in winter and spring. (v) Changes in the temperature regime of Turkey towards the more temperate and/or warmer climate conditions are most strongly related with the significant night-time warming in spring and summer. (vi) Magnitudes and signs of correlation coefficients and correlation patterns between the DTRs and the maximum and minimum temperatures have revealed that there is an opposite physical control mechanism on the year-to-year variability and the long-term variations and trends in the DTRs, particularly for the annual, spring and summer series. (vii) Significant increases of the night-time temperatures have most likely led to strong decreasing trends in the DTRs of most stations during the spring and summer seasons and annually and of some stations during winter and autumn. (viii) The asymmetric trends and the symmetric, but with different magnitude, trends in the maximum and minimum temperatures resulted in a significant decrease in the DTRs of many stations and are a considerable signal of ongoing changes in the climatic variability of Turkey.  相似文献   

8.
Measurements of the sum of peroxy radicals [HO2 + RO2],NOx (NO + NO2) and NOy (the sum of oxidisednitrogen species) made at Mace Head, on the Atlantic coast of Ireland in summer 1996 and spring 1997 are presented. Together with a suite of ancillary measurements, including the photolysis frequencies of O3 O(1D)(j(O1D)) and NO2 (j(NO2)), the measured peroxy radicals are used to calculate meandailyozone tendency (defined as the difference of the in-situphotochemical ozone production and loss rates); these values are compared with values derived from the photochemical stationary state (PSS) expression. Although the correlation between the two sets of values is good, the PSS values are found to be significantly larger than those derived from the peroxy radical measurements, on average, in line with previous published work. Possible sources of error in these calculations are discussed in detail. The data are further divided up into five wind sectors, according to the instantaneous wind direction measured at the research station. Calculation of mean ozone tendencies by wind sector shows that ozone productivity was higher during spring (April–May) 1997 than during summer (July–August) 1996across all airmasses, suggesting that tropospheric photochemistry plays an important role in the widely-reported spring ozone maximum in the Northern Hemisphere. Ozone tendencies were close to zero for the relatively unpolluted south-west, west and north-west wind sectors in the summer campaign, whereas ozone productivity was greatest in the polluted south-east sector for both campaigns. Daytime weighted average ozone tendencies were +(0.3± 0.1) ppbv h–1 for summer 1996 and +(1.0± 0.5) ppbvh–1 for spring 1997. These figures reflect the higher mixing ratios of ozone precursors in spring overall, as well as the higher proportion of polluted air masses from the south-east arriving at the site during the spring campaign. The ozone compensation point, where photochemical ozone destruction and production processes are in balance, is calculated to be ca. 14 pptv NO for both campaigns.  相似文献   

9.
DMS emissions and fluxes from the Australasian sector of the Antarctic and Subantarctic Oceans, bound by 46–68° S and 65.5–142.6° E, were determined from a limited number of samples (n=32) collected during three summer resupply voyages to Australian Antarctic continental research bases between November 1988 and January 1989 (a 92 day period). The maximum DMS emission from this sector of the Antarctic Ocean was in an area near the Antarctic Divergence (60–63° S) and the minimum DMS emission was from the Antarctic coastal and offshelf waters. The greatest emission of DMS from this sector of the Southern Ocean was from the Subantarctic waters. DMS flux from the Australasian Antarctic Ocean was 64.3×106 (±115) mol d–1 or 5.9 (±10.6)×109 mol based on an emission of 10.9 (±19.5) µmol m–2 d–1 (n=26). The flux of DMS from the Australasian sector of the Subantarctic Ocean was probably twice the flux of DMS from the adjacent Antarctic Ocean.  相似文献   

10.
Summary Trends of monthly air temperature extremes were investigated in five meteorological stations of the Grand-Duchy of Luxembourg during the period 1949–1998. The application of an innovative homogenization method based on the concept of relative homogeneity to climatic time series allows identifying multiple break points, as well as correcting data series in an objective and robust statistical way. The rise of maximum temperature (Tmax) has occurred at a rate of 1.5 times that of the minimum temperature (Tmin) in winter (+1.4°C versus +0.9°C) and summer (+1.4°C versus +0.8°C). No trend in temperature extremes was found in autumn, while spring was affected by a small warming (+0.3°C) of Tmin and no change in Tmax resulting in a decrease of the diurnal temperature range (DTR) (–0.3°C). In spring, a strong positive linear relationship between Tmin warming and local terrain slope could be found. Comparison to new-gridded large-scale climatologies indicates generally close agreement to temperature trends during the 1949–1998 period, while a lower local warming was observed in summer during the post-1975 period following the changing-point year of atmospheric circulation over North-western Europe. This study shows that the question of data homogeneity is not trivial and should receive careful attention before quantifying historical temperature trends and identifying their spatial patterns at regional scale.  相似文献   

11.
High volume bulk aerosol samples were collected continuously at three Antarctic sites: Mawson (67.60° S, 62.50° E) from 20 February 1987 to 6 January 1992; Palmer Station (64.77° S, 64.06° W) from 3 April 1990 to 15 June 1991; and Marsh (62.18° S, 58.30° W) from 28 March 1990, to 1 May 1991. All samples were analyzed for Na+, SO 4 2– , NO 3 , methanesulfonate (MSA), NH 4 + ,210Pb, and7Be. At Mawson for which we have a multiple year data set, the annual mean concentration of each species sometimes vary significantly from one year to the next: Na+, 68–151 ng m–3; NO 3 , 25–30 ng m–3; nss SO 4 2– , 81–97 ng m–3; MSA, 19–28 ng m–3; NH 4 + , 16–21 ng m–3;210Pb, 0.75–0.86 fCi m–3. Results from multiple variable regression of non-sea-salt (nss) SO 4 2– with MSA and NO 3 as the independent variables indicates that, at Mawson, the nss SO 4 2– /MSA ratio resulting from the oxidation of dimethylsulfide (DMS) is 2.80±0.13, about 13% lower than our earlier estimate (3.22) that was based on 2.5 years of data. A similar analysis indicates that the ratio at Palmer is about 40% lower, 1.71±0.10, and more comparable to previous results over the southern oceans. These results when combined with previously published data suggest that the differences in the ratio may reflect a more rapid loss of MSA relative to nss SO 4 2– during transport over Antarctica from the oceanic source region. The mean210Pb concentrations at Palmer and Marsh and the mean NO 3 concentration at Palmer are about a factor of two lower than those at Mawson. The210Pb distributions are consistent with a210Pb minimum in the marine boundary layer in the region of 40°–60° S. These features and the similar seasonalities of NO 3 and210Pb at Mawson support the conclusion that the primary source regions for NO 3 are continental. In contrast, the mean concentrations of MSA, nss SO 4 2– , and NH 4 + at Palmer are all higher than those at Mawson: MSA by a factor of 2; nss SO 4 2– by 10%; and NH 4 + by more than 50%. However, the factor differences exhibit substantial seasonal variability; the largest differences generally occur during the austral summer when the concentrations of most of the species are highest. NH 4 + /(nss SO 4 2– +MSA) equivalent ratios indicate that NH3 neutralizes about 60% of the sulfur acids during December at both Mawson and Palmer, but only about 30% at Mawson during February and March.  相似文献   

12.
This paper deals with the most recent trends in meteorological and hydrological variables, which include air temperature and precipitation (P), potential and actual (ET) evapotranspiration, surface runoff (RO), water recharge into the soil (R) and water loss from the soil (L). Most hydrological variables were calculated via Palmer's algorithm. For this purpose, two rank-based statistical tests (the Mann?CKendall (MK) and a change-point analysis (CPA) approach) and the basic linear regression-based model were applied on the weekly precipitation and temperature from 17 stations all over Greece, during 1961?C2006. Only in winter, all variables except for R, which showed no clear signal, presented downward trends. The declining trends of P and L in spring and summer were counterbalanced by reductions in RO (and R in the case of summer) as opposed to increases in ET. In autumn, the declining tendencies of P and L were offset by RO reductions and R increases. Annually, the trends in water cycle components were analogous to that of spring, summer and autumn. The number of stations with statistically significant (at 95%) trends greatly varied with season and meteorological/hydrological variable.  相似文献   

13.
Broadband solar irradiance data obtained in the spectral range 400–940 nm at Kwangju, South Korea from 1999–2000 have been analyzed to investigate the effects of cloud cover and atmospheric optical depth on solar radiation components. Results from measurements indicate that the percentage of direct and diffuse horizontal components of solar irradiance depend largely on total optical depth (TOD) and cloud cover. During summer and spring, the percentages of diffuse solar irradiance relative to the global irradiance were 5.0% and 4.9% as compared to 2.2% and 3.0% during winter and autumn. The diffuse solar irradiance is higher than the direct in spring and summer by 24.2%, and 40.6%, respectively, which may largely be attributed to the attenuation (scattering) of radiation by heavy dust pollution and large cloud amount. In cloud-free conditions with cloud cover ≤2/10, the fraction of the direct and diffuse components were 66.0% and 34.0%, respectively, with a mean daily global irradiance value of 7.92±2.91 MJ m−2 day−1. However, under cloudy conditions (with cloud cover ≥8/10), the diffuse and direct fractions were 97.9% and 2.2% of the global component, respectively. The annual mean TOD under cloudless conditions (cloud cover≤2/10) yields 0.74±0.33 and increased to as much as 3.15±0.67 under cloudy conditions with cloud amount ≥8/10. An empirical formula is derived for estimating the diffuse and direct components of horizontal solar irradiance by considering the total atmospheric optical depth (TOD). Results from statistical models are shown for the estimation of solar irradiance components as a function of TOD with sufficient accuracy as indicated by low standard error for each solar zenith angle (SZA).  相似文献   

14.
A global data set on the geographic distribution and seasonality of freshwater wetlands and rice paddies has been compiled, comprising information at a spatial resolution of 2.5° by latitude and 5° by longitude. Global coverage of these wetlands total 5.7×106 km2 and 1.3×106 km2, respectively. Natural wetlands have been grouped into six categories following common terminology, i.e. bog, fen, swamp, marsh, floodplain, and shallow lake. Net primary productivity (NPP) of natural wetlands is estimated to be in the range of 4–9×1015 g dry matter per year. Rice paddies have an NPP of about 1.4×1015 g y–1. Extrapolation of measured CH4 emissions in individual ecosystems lead to global methane emission estimates of 40–160 Teragram (1 Tg=1012 g) from natural wetlands and 60–140 Tg from rice paddies per year. The mean emission of 170–200 Tg may come in about equal proportions from natural wetlands and paddies. Major source regions are located in the subtropics between 20 and 30° N, the tropics between 0 and 10° S, and the temperate-boreal region between 50 and 70° N. Emissions are highly seasonal, maximizing during summer in both hemispheres. The wide range of possible CH4 emissions shows the large uncertainties associated with the extrapolation of measured flux rates to global scale. More investigations into ecophysiological principals of methane emissions is warranted to arrive at better source estimates.  相似文献   

15.
Climate variability and change in Bulgaria during the 20th century   总被引:1,自引:1,他引:1  
Summary Climate data used for climate variability and change analyses, must be homogeneous, to be accurate. The data currently used in the Météo-France homogenization procedure, which does not require computation of regional reference series, was applied to precipitation and average air temperature series in Bulgaria. The Caussinus-Mestre method, with a double-step procedure, was used to detect multiple breaks and outliers in the long-term series of precipitation and average air temperature. A two factor linear model was applied for break correction. The homogenization procedure was run till all or most break risk was gone. Analysis of climate variability and change in Bulgaria during the 20th century was done on already homogenized precipitation and average air temperature series. The statistical significance of the trends obtained was evaluated by the coefficient of Spearman rank correlation. The variations of annual precipitation in Bulgaria showed an overall decrease. The country has experienced several drought episodes during the 20th century, most notably in the 1940s and 1980s. Seasonal precipitation in spring shows a positive trend at most weather stations across the country. The trend for summer and autumn precipitation is negative. A statistically significant increasing trend of winter precipitation in north Bulgaria was detected. No significant warming trend in the country was found during the last century inspite of the warming observed during the last two decades. Summer in Bulgaria tends to be warmer from the beginning of the 1980s. There is a statistically significant increasing trend of average air temperature during the winter season at the weather stations near the Danube river (north Bulgaria) during the periods 1901–2000 and 1931–2000.  相似文献   

16.
Summary The structure and variability of the inter-tropical convergence zone (ITCZ) in the SW Indian Ocean in the austral summer is investigated. The ITCZ is identified by satellite microwave (SSMI) precipitable water (PW) values > 5 g cm–2, minimum outgoing longwave radiation (OLR) values < 220 W m–2 and the pattern of convergence in the low level (850 hPa) winds. According to OLR climatology, the ITCZ lies over 15°S latitude to the west of Madagascar (40–50°E), but near 10°S to the east of 60°E. Inter-annual and intra-seasonal variability is induced by the interaction of the convective NW monsoon and subsident easterly trades. Symptoms of the structure and variability are presented using tropical cyclone (TC) tracks, axes of PW exceedences and OLR, 850hPa wind and PW fields in the period 1988–1990. The shape and intensity of the ITCZ is modulated by the strength of the NW monsoon off east Africa and by standing vortices in the SW Indian Ocean. The topography of Madagascar imparts a distinctive break in convective characteristics, and distinguishes the SE African ITCZ from its maritime counterpart.With 6 Figures  相似文献   

17.
The following Henry's law constants (K H/mol2kg-2atm-1) for HNO3 and the hydrohalic acids have been evaluated from available partial pressure and other thermodynamic data from 0°–40°C, 1 atm total pressure: HNO 3 , 40°C–5.85×105; 30°C–1.50×106; 25°C–2.45×106; 20°C–4.04×106; 10°C–1.15×107; 0°C–3.41×107. HF, 40°C–3.2; 30°C–6.6; 25°C–9.61; 20°C–14.0; 10°C–32.0; 0°C–76. HCl, 40°C–4.66×105; 30°C–1.23×106; 25°C–2.04×106; 20°C–3.37×106; 10°C–9.71×106; 0°C–2.95×107. HBr, 40°C–2.5×108; 30°C–7.5×108; 25°C–1.32×109; 20°C–2.37×109; 10°C–8.10×109; 0°C–3.0×1010. HI, 40°C–5.2×108; 30°C–1.5×109; 25°C–2.5×109; 20°C–4.5×109; 10°C–1.5×1010; 0°C–5.0×1010. Simple equilibrium models suggest that HNO3, CH3SO3H and other acids up to 10x less soluble than HCl displace it from marine seasalt aerosols. HF is displaced preferentially to HCl by dissolved acidity at all relative humidities greater than about 80%, and should be entirely depleted in aged marine aerosols.  相似文献   

18.
The more humid, warmer weather pattern predicted for the future is expected to increase the windthrow risk of trees through reduced tree anchorage due to a decrease in soil freezing between late autumn and early spring, i.e during the most windy months of the year. In this context, the present study aimed at calculating how a potential increase of up to 4°C in mean annual temperature might modify the duration of soil frost and the depth of frozen soil in forests and consequently increase the risk of windthrow. The risk was evaluated by combining the simulated critical windspeeds needed to uproot Scots pines (Pinus sylvestris L.) under unfrozen soil conditions with the possible change in the frequency of these winds during the unfrozen period. The evaluation of the impacts of elevated temperature on the frequency of these winds at times of unfrozen and frozen soil conditions was based on monthly wind speed statistics for the years 1961–1990 (Meteorological Yearbooks of Finland, 1961–1990). Frost simulations in a Scots pine stand growing on a moraine sandy soil (height 20 m, stand density 800 stems ha–1) showed that the duration of soil frost will decrease from 4–5 months to 2–3 months per year in southern Finland and from 5–6 months to 4–5 months in northern Finland given a temperature elevation of 4°C. In addition, it could decrease substantially more in the deeper soil layers (40–60 cm) than near the surface (0–20 cm), particularly in southern Finland. Consequently, tree anchorage may lose much of the additional support gained at present from the frozen soil in winter, making Scots pines more liable to windthrow during winter and spring storms. Critical wind-speed simulations showed mean winds of 11–15 m s–1 to be enough to uproot Scots pines under unfrozen soil conditions, i.e. especially slender trees with a high height to breast height diameter ratio (taper of 1:120 and 1:100). In the future, as many as 80% of these mean winds of 11–15 m s–1 would occur during months when the soil is unfrozen in southern Finland, whereas the corresponding proportion at present is about 55%. In northern Finland, the percentage is 40% today and is expected to be 50% in the future. Thus, as the strongest winds usually occur between late autumn and early spring, climate change could increase the loss of standing timber through windthrow, especially in southern Finland.  相似文献   

19.
利用1989~2018年ERA5地面太阳辐射资料,分析了不同季节主要大气环流特征指数与中国地面太阳辐射异常的关系。结果表明:(1)在春季,东亚槽位置对中国中东部大面积的地面太阳辐射异常有一致性的影响,其位置偏东时,地面太阳辐射异常显著偏少。冬季风强度和ENSO(El Ni?o–Southern Oscillation)分别对长江流域南北、中国南方东部和西部有反位相的影响。(2)夏季的影响因子比较复杂,NAO(North Atlantic Oscillation)和夏季风是两个较主要的影响因子,NAO对中国北方较多地区的地面太阳辐射异常的影响较为显著,而夏季风主要与江淮地区的地面太阳辐射异常相关联。当NAO指数偏大(小)时,北方大部分地区地面太阳辐射异常偏少(多)。当夏季风偏强(弱)时,江淮流域的地面太阳辐射异常显著偏少(多)。(3)在秋季,地面太阳辐射异常主要受到东亚槽位置、冬季风和NAO的影响,冬季风和东亚槽主要影响北方地区,当东亚槽偏西或冬季风偏强时,中国北方除东北地区外的大部分地区地面太阳辐射偏多。NAO主要与中国西部的地面太阳辐射异常关联,当NAO指数偏大时,西部地区北方地面太阳辐射异常偏少而南方大部分地区偏多。(4)在冬季,ENSO和冬季风是较重要的影响因子,但其显著影响区域并不对称。在ENSO负位相或冬季风较强时,中国北方大部分地区的地面太阳辐射异常显著偏多,而ENSO正位相或冬季风较弱最有利于中国南方地面太阳辐射异常偏少,但显著影响范围较小。  相似文献   

20.
南京不同天气和能见度下云凝结核的观测分析   总被引:3,自引:1,他引:2  
王惠  刘晓莉  安俊琳  丁伟 《气象科学》2016,36(6):800-809
利用美国DMT公司生产的云凝结核(Cloud Condensation Nuclei,CCN)计数器(DMTCCNC),对2013年4—12月南京地区CCN进行观测。对不同天气条件下CCN活化谱拟合,霾天C值最高,为13 085 cm-3,雨后C值降至8 054 cm-3,属于大陆性核谱。不同能见度条件下CCN活化谱特征有明显差异,南京地区不同程度霾天CCN数浓度均远高于轻雾天,浓雾时期CCN数浓度显著偏高。CCN数浓度受到气象要素和天气状况、气溶胶源排放等因素影响。南京地区气溶胶凝结核(Condensation Nuclei,CN)数浓度和CCN数浓度的拟合结果显示出较好的相关性。CCN数浓度值:冬季春季秋季夏季,春季CCN数浓度日变化有三峰趋势,夏季基本呈单峰型,秋季、冬季双峰特征突出。气溶胶源排放、环境气象条件和气溶胶理化特性均会影响CCN数浓度的季节变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号