首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone damages under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 478 estimates of the temperature-damage relationship from nineteen studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5 °C increase in global surface air temperature would cause hurricane damages to increase by 63 %. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are +28 % and +23 %, respectively. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.  相似文献   

2.
沿海风工程设计风速中泊松-耿贝尔法的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
每年西北太平洋热带气旋(TC)发生的次数、移动路径和强度都是随机的,我国东南沿海各地每年受TC影响的次数便构成了某种离散型分布,而TC影响下的最大风速则可以构成某种连续型分布。该文采用上海台风研究所提供的1961—2006年TC中心风速和TC影响期间各台站大风资料,利用泊松-耿贝尔联合极值风速计算方法,计算了沿海各气象站TC影响大风的多年一遇风工程设计最大风速。结果表明:当观测资料样本序列较短,特别是像TC这样随机性很强的天气事件,泊松-耿贝尔联合极值算法更具优势;我国沿海地区有53.9%的台站50年一遇最大风速在25 m/s以下,最大风速大于42.5 m/s以上的台站分布于浙江的大陈岛、嵊山、石浦,福建的北茭和台山,广东的遮浪、上川岛和海南的西沙岛,在这些地区进行风电开发风险较大,应引起足够重视。  相似文献   

3.
The effect of climate change on tropical cyclone intensity has been an important scientific issue for a few decades.Although theory and modeling suggest the intensification of tropical cyclones in a warming climate,there are uncertainties in the assessed and projected responses of tropical cyclone intensity to climate change.While a few comprehensive reviews have already provided an assessment of the effect of climate change on tropical cyclone activity including tropical cyclone intensity,this review focuses mainly on the understanding of the effect of climate change on basin-wide tropical cyclone intensity,including indices for basin-wide tropical cyclone intensity,historical datasets used for intensity trend detection,environmental control of tropical cyclone intensity,detection and simulation of tropical cyclone intensity change,and some issues on the assessment of the effect of climate change on tropical cyclone intensity.In addition to the uncertainty in the historical datasets,intertwined natural variabilities,the considerable model bias in the projected large-scale environment,and poorly simulated inner-core structures of tropical cyclones,it is suggested that factors controlling the basin-wide intensity can be different from individual tropical cyclones since the assessment of the effect of climate change treats tropical cyclones in a basin as a whole.  相似文献   

4.
This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850?hPa with a value?≥450?×?10?6?s?1, and the temperature at 300?hPa being 1°C higher than the average temperature within 15° latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3.  相似文献   

5.
Model studies do not agree on future changes in tropical cyclone (TC) activity on regional scales. We aim to shed further light on the distribution, frequency, intensity, and seasonality of TCs that society can expect at the end of the twenty-first century in the Southern hemisphere (SH). Therefore, we investigate TC changes simulated by the atmospheric model ECHAM5 with T213 (~60 km) horizontal resolution. We identify TCs in present-day (20C; 1969–1990) and future (21C; 2069–2100) time slice simulations, using a tracking algorithm based on vorticity at 850 hPa. In contrast to the Northern hemisphere (NH), where tropical storm numbers reduce by 6 %, there is a more dramatic 22 % reduction in the SH, mainly in the South Indian Ocean. While an increase of static stability in 21C may partly explain the reduction in tropical storm numbers, stabilization cannot alone explain the larger SH drop. Large-scale circulation changes associated with a weakening of the Tropical Walker Circulation are hypothesized to cause the strong decrease of cyclones in the South Indian Ocean. In contrast the decrease found over the South Pacific appears to be partly related to increased vertical wind shear, which is possibly associated with an enhanced meridional sea surface temperature gradient. We find the main difference between the hemispheres in changes of the tropical cyclones of intermediate strength with an increase in the NH and a decrease in the SH. In both hemispheres the frequency of the strongest storms increases and the frequency of the weakest storms decreases, although the increase in SH intense storms is marginal.  相似文献   

6.
On the basis of climate and reanalysis data, a contribution is estimated of tropical cyclones (TCs) to the fluxes of heat, moisture, momentum, and mechanical energy of wind over the seas of Japan and Okhotsk. The estimates are obtained for two TCs that passed over these areas. It is shown that when TCs move over both seas, the heat and moisture exchange between the sea surface and the atmosphere increases approximately by a factor of 3. Also, a significant dynamic effect of tropical cyclones on the upper ocean layer is noted, so that the flux of mechanical wind energy exceeds the background monthly mean values by a factor of 10 or more. On the example for the Far East seas, a well-pronounced dependence of disturbances in the upper ocean on intensity, size, and dynamics of the cyclone is shown.  相似文献   

7.
全球变暖对台风活动影响的研究进展   总被引:14,自引:1,他引:13  
雷小途  徐明  任福民 《气象学报》2009,67(5):679-688
全球变暖是当前热点问题之一,各大洋区时有发生的"超乎寻常"的台风活动也广为关注.全球范围内的台风活动特征是否悄然发生了变化?这种变化与全球变暖是否存在关联?这些问题已成为国际台风界的重点研究内容之一,近年来取得了许多进展.文中从全球台风活动特征变化事实的观测研究,成因分析、数值模拟与预测等方面对此进行了概述.综合各方观点,得到主要共识如下:单个台风的异常活动不宜直接归因于气候变化;全球台风频数的年际变化趋势并不明显;沿海地区人口增长和基础设施增加是近期台风对社会影响加重的主要原因;自1970年以来,一些海区的超强台风比例明显增大,比目前数值模式的模拟结果要大许多;如果全球气候持续变暖,台风的最大风速和降水很可能会继续增加;尽管在台风记录中同时有支持和不支持人类活动(全球变暖的影响)信号存在的证据,但在这一点上还不能给出一致的肯定结论.另外,由于台风和相关气候资料存在均一性方面问题,气候数值模式对台风气候特征描述也存在缺陷,这两类问题的存在使得在目前阶段确切阐明全球变暖和台风活动的关系仍有极大的不确定性.  相似文献   

8.
A method to simulate characteristics of wind speed in the boundary layer of tropical cyclones in an idealized manner is developed and evaluated. The method can be used in a single-column modelling set-up with a planetary boundary-layer parametrization, or within large-eddy simulations (LES). The key step is to include terms in the horizontal velocity equations representing advection and centrifugal acceleration in tropical cyclones that occurs on scales larger than the domain size. Compared to other recently developed methods, which require two input parameters (a reference wind speed, and radius from the centre of a tropical cyclone) this new method also requires a third input parameter: the radial gradient of reference wind speed. With the new method, simulated wind profiles are similar to composite profiles from dropsonde observations; in contrast, a classic Ekman-type method tends to overpredict inflow-layer depth and magnitude, and two recently developed methods for tropical cyclone environments tend to overpredict near-surface wind speed. When used in LES, the new technique produces vertical profiles of total turbulent stress and estimated eddy viscosity that are similar to values determined from low-level aircraft flights in tropical cyclones. Temporal spectra from LES produce an inertial subrange for frequencies \(\gtrsim \)0.1 Hz, but only when the horizontal grid spacing \(\lesssim \)20 m.  相似文献   

9.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

10.
There is little doubt that between now and 2050 Earth faces global warming and other changes in climate unprecedented in magnitude since the end of the last glaciation some 10 000 years ago. Predicting the exact nature of that change is, however, difficult. Arguments from palaeoclimatic analogues, comparisons of recent warm versus cool years, physical reasoning and computer simulations are all subject to error and uncertainty. This is more so in the relatively less well understood climate system of the Southern Hemisphere, and at the local and regional scale, than in the Northern Hemisphere and at a zonally averaged scale. Nevertheless some broad features can be described with some confidence, and we can at least identify some of the major uncertainties and processes which we need to understand better.Increased poleward penetration of the subtropical monsoonal regimes is likely, and tropical cyclones may also occur at higher latitudes than at present. The role of the oceans, especially at high southern latitudes and in the tropics, and effects which may change with time as greenhouse gas concentrations gradually increase (transient effects) are particularly important and uncertain in the Southern Hemisphere.We know enough to declare the urgency of slowing down and eventually limiting the greenhouse effect. However, more research is needed to guide decision makers and planners at the local and regional level as they try to cope with those climatic changes which are unavoidable. Regional cooperation is essential to make the best use of the research and planning facilities available.  相似文献   

11.
A dataset entitled "A potential risk index dataset for landfalling tropical cyclones over the Chinese mainland" (PRITC dataset V1.0) is described in this paper, as are some basic statistical analyses. Estimating the severity of the impacts of tropical cyclones (TCs) that make landfall on the Chinese mainland based on observations from 1401 meteorological stations was proposed in a previous study, including an index combining TC-induced precipitation and wind (IPWT) and further information, such as the corresponding category level (CAT_IPWT), an index of TC-induced wind (IWT), and an index of TC-induced precipitation (IPT). The current version of the dataset includes TCs that made landfall from 1949–2018; the dataset will be extended each year. Long-term trend analyses demonstrate that the severity of the TC impacts on the Chinese mainland have increased, as embodied by the annual mean IPWT values, and increases in TC-induced precipitation are the main contributor to this increase. TC Winnie (1997) and TC Bilis (2006) were the two TCs with the highest IPWT and IPT values, respectively. The PRITC V1.0 dataset was developed based on the China Meteorological Administration's tropical cyclone database and can serve as a bridge between TC hazards and their social and economic impacts.  相似文献   

12.
13.
The atmospheric and oceanic conditions are examined during different stages of the lifecycle of western North Pacific tropical cyclones (TCs), with the intention to understand how the environment affects the intensity change of TCs in this area. It is found that the intensification usually occurs when the underlying sea surface temperature (SST) is higher than 26℃. TCs usually experience a rapid intensification when the SST is higher than 27.5℃ while lower than 29.5℃. However, TCs decay or only maintain its intensity when the SST is lower than 26℃. The intensifying TCs usually experience a low-to-moderate vertical wind shear (2-10 ms-1 ). The larger the vertical wind shear, the slower the TCs strengthen. In addition, the convective available potential energy (CAPE) is much smaller in the developing stage than in the formation stage of TCs. For the rapidly intensifying TCs, the changes of SST, CAPE, and vertical wind shear are usually small, indicating that the rapid intensification of TCs occurs when the evolution of the environment is relatively slow.  相似文献   

14.
基于IBTrACS提供的热带气旋最佳路径数据集,在统计分析历史热带气旋的发生年频次、发生位置、路径移动及强度变化等的基础上,建立了西北太平洋热带气旋轨迹合成模型。模型包括生成模型、移动模型、消亡模型及强度模型4个部分,并从地理轨迹密度、年登陆率、登陆风速分布三个方面,对模拟的气旋路径与历史气旋路径进行比较,以验证模型的准确性和可靠性。结果表明,构建的西北太平洋热带气旋全路径统计模拟模型稳健可靠,可进一步应用于研究区热带气旋的定量精细化的风险评估,能提高气旋风险灾害评估的可信度。  相似文献   

15.
Predicting the intensity of tropical cyclones(TCs)is challenging in operational weather prediction systems,partly due to the difficulty in defining the initial vortex.In an attempt to solve this problem,this study investigated the effect of initial vortex intensity correction on the prediction of the intensity of TCs by the operational numerical prediction system GRAPES_TYM(Global and Regional Assimilation and Prediction System_Typhoon Model)of the National Meteorological Center of the China Meteorological Administration.The statistical results based on experiments using data for major TCs in 2018 show that initial vortex intensity correction can reduce the errors in mean intensity for up to 120-h integration,with a noticeable decrease in the negative bias of intensity and a slight increase in the mean track error.The correction leads to an increase in the correlation coefficient of Vmax(maximum wind speed at 10-m height)for the severe typhoon and super typhoon stages.Analyses of the errors in intensity at different stages of intensity(including tropical storms,severe tropical storms,typhoons,severe typhoons,and super typhoons)show that vortex intensity correction has a remarkable positive influence on the prediction of super typhoons from 0 to 120h.Analyses of the errors in intensity for TCs with different initial intensities indicate that initial vortex correction can significantly improve the prediction of intensity from 24 to 96 h for weak TCs(including tropical storms and severe tropical storms at the initial time)and up to 24 h for strong TCs(including severe typhoons and super typhoons at the initial time).The effect of the initial vortex intensity correction is more important for developing TCs than for weakening TCs.  相似文献   

16.
王磊  陈光华  黄荣辉 《大气科学》2009,33(5):916-922
利用日本的JRA-25 (Japanese 25-year Reanalysis) 逐日再分析风场资料以及美国联合台风预报中心的热带气旋(TC)数据, 以厦门为分界点, 分别对影响登陆我国厦门以北和厦门以南TC的西北太平洋副热带高压和季风槽作了相关的环流分析。通过定义副热带高压的西伸脊点和南北脊线指数, 以及季风槽的倾斜和强度指数, 定量研究它们与登陆我国不同区域TC的关系。研究结果表明, 所定义的指数对西北太平洋地区TC的生成位置、能量及登陆我国的路径有很好的指示作用。西北太平洋副高位置东西以及南北位置的偏移对登陆我国厦门以北TC的路径有很大影响; 西北太平洋季风槽线斜率对登陆我国厦门以南TC的路径有一定影响, 且倾斜程度与西北太平洋地区TC平均生成地的南北向偏移有密切的关系, 并且, 西北太平洋季风槽线的平均涡度对于西北太平洋地区TC生成时的能量也有很大影响。  相似文献   

17.
基于风廓线雷达的广东登陆台风边界层高度特征研究   总被引:3,自引:1,他引:2  
廖菲  邓华  李旭 《大气科学》2017,41(5):949-959
针对8个登陆广东省的热带气旋,利用经过数据质量控制的风廓线雷达连续、高时空分辨率的风场观测数据,对热带气旋边界层特征进行了分析。研究结果表明:热带气旋边界层中切向风速大值区垂直范围越大、风速越强、持续时间越久,则热带气旋强度越大、登陆后强度维持时间越久。眼区外入流层厚度越大,入流层气流越强,热带气旋登陆后强度维持时间则越久。风廓线雷达信噪比垂直梯度对大气湍流信息有一定的指示作用,对于入流层高度在2000 m以下的热带气旋,其入流层顶所在高度与信噪比梯度最大值所在高度相近,对于入流层较为深厚的热带气旋,用信噪比垂直梯度确定的边界层高度虽接近入流层顶高,但仍有一定差距。不同特点的热带气旋其边界层高度并不相同,对于登陆后强度迅速减弱的热带气旋边界层高度在500~1000 m;登陆后强度持续时间短的热带气旋,其边界层高度约1000~2000 m;登陆后强度持续时间长的热带气旋,其边界层高度在2000 m之上,最高可达5000~7000 m。这些结果加深了对登陆台风边界层高度演变特征的认识。  相似文献   

18.
The cyclone phase space (CPS) method has been utilized to evaluate the extratropical transition (ET) of tropical cyclones (TCs) in many recent publications. However, these studies mainly focused over the North Atlantic basin. In this paper, the CPS characteristics of all the cyclones over the western North Pacific are investigated and discussed, with three parameters calculated from the best-track data of the Regional Specialized Meteorological Center in Tokyo and the Japanese 25-yr reanalysis data. It is concluded that most TCs over the western North Pacific possess the non-frontal and warm-core structure, while a larger number of cyclones that have undergone ET hold the frontal and cold-core structure. The spatial pattern of the CPS parameters indicates that the areas of tropical and extratropical cyclone activities could be demarcated by 30°N. The composite and individual series of three parameters of the CPS indicate that the transformation of −V TU from positive to negative leads to the start of ET, and could be considered as a potential predictor in operationally forecasting an ET event.  相似文献   

19.
Using a suite of lateral boundary conditions, we investigate the impact of domain size and boundary conditions on the Atlantic tropical cyclone and african easterly Wave activity simulated by a regional climate model. Irrespective of boundary conditions, simulations closest to observed climatology are obtained using a domain covering both the entire tropical Atlantic and northern African region. There is a clear degradation when the high-resolution model domain is diminished to cover only part of the African continent or only the tropical Atlantic. This is found to be the result of biases in the boundary data, which for the smaller domains, have a large impact on TC activity. In this series of simulations, the large-scale Atlantic atmospheric environment appears to be the primary control on simulated TC activity. Weaker wave activity is usually accompanied by a shift in cyclogenesis location, from the MDR to the subtropics. All ERA40-driven integrations manage to capture the observed interannual variability and to reproduce most of the upward trend in tropical cyclone activity observed during that period. When driven by low-resolution global climate model (GCM) integrations, the regional climate model captures interannual variability (albeit with lower correlation coefficients) only if tropical cyclones form in sufficient numbers in the main development region. However, all GCM-driven integrations fail to capture the upward trend in Atlantic tropical cyclone activity. In most integrations, variations in Atlantic tropical cyclone activity appear uncorrelated with variations in African easterly wave activity.  相似文献   

20.
由热带气旋进入海洋近惯性运动能量的估计   总被引:2,自引:0,他引:2  
根据美国联合台风警报中心(JTWC)最佳路径资料,采用Bogus方案构造了西北太平洋2000—2006年包含热带气旋的风场,作为海洋模式POM的风应力驱动,研究了西北太平洋热带气旋进入海洋近惯性运动的能量分布、传播等特征。结果表明,考虑热带气旋后西北太平洋近惯性能量增加了三倍多,约为5.14×10-3TW,其中大部分能量在低纬产生,且近半数存在于50 m以上,85%发生在海表面至水下500 m,还有15%能达到更深层次。热带气旋产生的近惯性能量在下传时,其传播方向和速度随深度呈明显差异:在上混合层,能量基本均匀,平均能在此滞留约2 d然后下传;在200 m以上,能量以垂直下传为主,下传速度非常快;在200~800m左右,能量下传路径发生右偏,下传速度较慢;在800 m以下,下传速度重新加快,并向TC路径靠近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号