首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
A comprehensive model for the prediction of concentration fluctuations in plumes dispersing in the complex and highly disturbed wind flows in an urban environment is formulated. The mean flow and turbulence fields in the urban area are obtained using a Reynolds-averaged Navier-Stokes (RANS) flow model, while the standard k-ϵ turbulence model (k is the turbulence kinetic energy and ϵ is the viscous dissipation rate) is used to close the model. The RANS model provides a specification of the velocity statistics of the highly disturbed wind flow in the urban area, required for the solution of the transport equations for the mean concentration and concentration variance (both of which are formulated in the Eulerian framework). A physically-based formulation for the scalar dissipation time scale t d , required for the closure of the transport equation for , is presented. This formulation relates t d to an inner time scale corresponding to “internal” concentration fluctuation associated with relative dispersion, rather than an outer time scale associated with the entire portion of the fluctuation spectrum. The two lowest-order moments of concentration ( and ) are used to determine the parameters of a pre-chosen functional form for the concentration probability density function (clipped-gamma distribution). Results of detailed comparisons between a water-channel experiment of flow and dispersion in an idealized obstacle array and the model predictions for mean flow, turbulence kinetic energy, mean concentration, concentration variance, and concentration probability density function are presented.  相似文献   

2.
A modification of the most popular two-equation (E–φ) models, taking into account the plant drag, is proposed. Here E is the turbulent kinetic energy (TKE) and φ is any of the following variables: El (product of E and the mixing length l), (dissipation rate of TKE), and ω (specific dissipation of TKE, ). The proposed modification is due to the fact that the model constants estimated experimentally for ‘free-air’ flow do not allow for adequate reconstruction of the ratio between the production and dissipation rates of TKE in the vegetation canopy and have to be adjusted. The modification is universal, i.e. of the same type for all E–φ models considered. The numerical experiments carried out for both homogeneous and heterogeneous plant canopies with E–φ models (and with the El model taken as a kind of reference) show that the modification performs well. They also suggest that E– and E–ω schemes are more promising than the EEl scheme for canopy flow simulation since they are not limited by the need to use a wall function.In addition, a new parameterization for enhanced dissipation within the plant canopy is derived. It minimizes the model sensitivity to C μ, the key parameter for two-equation schemes, and whose estimates unfortunately vary considerably from experiment to experiment. The comparison of results of new modified E– and E –ω models with observations from both field and wind-tunnel experiments shows that the proposed parameterization is quite robust. However, because of uncertainties with the turbulence Prandtl and Schmidt numbers for the E– model within the canopy, the E–ω model is recommended for future implementation, with the suggested modifications.  相似文献   

3.
To investigate how velocity variances and spectra are modified by the simultaneous action of topography and canopy, two flume experiments were carried out on a train of gentle cosine hills differing in surface cover. The first experiment was conducted above a bare surface while the second experiment was conducted within and above a densely arrayed rod canopy. The velocity variances and spectra from these two experiments were compared in the middle, inner, and near-surface layers. In the middle layer, and for the canopy surface, longitudinal and vertical velocity variances () were in phase with the hill-induced spatial mean velocity perturbation (Δu) around the so-called background state (taken here as the longitudinal mean at a given height) as predicted by rapid distortion theory (RDT). However, for the bare surface case, and remained out of phase with Δu by about L/2, where L is the hill half-length. In the canopy layer, wake production was a significant source of turbulent energy for , and its action was to re-align velocity variances with Δu in those layers, a mechanism completely absent for the bare surface case. Such a lower ‘boundary condition’ resulted in longitudinal variations of to be nearly in phase with Δu above the canopy surface. In the inner and middle layers, the spectral distortions by the hill remained significant for the background state of the bare surface case but not for the canopy surface case. In particular, in the inner and middle layers of the bare surface case, the effective exponents derived from the locally measured power spectra diverged from their expected  − 5/3 value for inertial subrange scales. These departures spatially correlated with the hill surface. However, for the canopy surface case, the spectral exponents were near  − 5/3 above the canopy though the minor differences from  − 5/3 were also correlated with the hill surface. Inside the canopy, wake production and energy short-circuiting resulted in significant departures from  − 5/3. These departures from  − 5/3 also appeared correlated with the hill surface through the wake production contribution and its alignment with Δu. Moreover, scales commensurate with Von Karman street vorticies well described wake production scales inside the canopy, confirming the important role of the mean flow in producing wakes. The spectra inside the canopy on the lee side of the hill, where a negative mean flow delineated a recirculation zone, suggested that the wake production scales there were ‘broader’ when compared to their counterpart outside the recirculation zone. Inside the recirculation zone, there was significantly more energy at higher frequencies when compared to regions outside the recirculation zone.  相似文献   

4.
Wind and tracer data from the Oklahoma City Joint Urban 2003 (JU2003) and the Manhattan Madison Square Garden 2005 (MSG05) urban field experiments are being analyzed to aid in understanding air flow and dispersion near street-level in built-up downtown areas. The mean winds are separately calculated for groups of anemometers having similar exposures such as “near street level” and “on building top”. Several general results are found, such as the scalar wind speed at street level is about 1/3 of that at building top. Turbulent standard deviations of wind speed components and temperature, and vertical fluxes of momentum and sensible heat, are calculated from sonic anemometers near street level at 20 locations in JU2003 and five locations in MSG05, and from two rooftop locations in MSG05. The turbulence observations are consistent with observations in the literature at other cities, although the JU2003 and MSG05 data are unique in that many data are available near street level. For example, it is found that the local (i.e., at the measuring height) averages about 1.5 and the local averages about 0.25 in the two cities, where is the standard deviation of vertical velocity fluctuations, is the friction velocity, and u is the wind speed. The ratio of temperature fluctuations to temperature scale, , averages about −3 in both cities, consistent with similarity theory for slightly unstable conditions, where is the standard deviation of temperature fluctuations, and is the temperature scale. The calculated Obukhov length, L, is also consistent with slightly unstable conditions near street level, even at night during JU2003. The SF6 tracer concentration observations from JU2003 are analyzed. Values of for the continuous releases are calculated for each release and arc distance, where is the 30-min average arc maximum concentration, Q is the continuous source emission rate, and u is the spatial-averaged wind speed in the downtown area. The basic characteristics of the JU2003 plot of averaged agree reasonably well with similar plots for other urban experiments in Salt Lake City and London (i.e., at . A is found to be about 3 during the day and about 10 during the night.  相似文献   

5.
The note presents a rational approach to modelling the source/sink due to vegetation or buoyancy effects that appear in the turbulent kinetic energy, E, equation and a supplementary equation for a length-scale determining variable, φ, when two-equation closure is applied to canopy and atmospheric boundary-layer flows. The approach implements only standard model coefficients C φ1 and C φ2 in the production and destruction terms of the φ equation, respectively. Numerical tests illustrate the practical applicability of the method, where, for example, simulations with the Eω model (where is the specific dissipation and is the dissipation rate of E) properly reproduce both the surface-layer wind profile estimated from the Monin-Obukhov similarity theory and the mixing-height evolution observed above forested terrain in Southern Finland.  相似文献   

6.
We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model permits the existence of turbulence at any gradient Richardson number, Ri. Instead of the critical value of Richardson number separating—as is usually assumed—the turbulent and the laminar regimes, the suggested model reveals a transitional interval, , which separates two regimes of essentially different nature but both turbulent: strong turbulence at ; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at . Predictions from this model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulation and large-eddy simulation.  相似文献   

7.
The turbulent flow inside dense canopies is characterized by wake production and short-circuiting of the energy cascade. How these processes affect passive scalar concentration variability in general and their spectral properties in particular remains a vexing problem. Progress on this problem is frustrated by the shortage of high resolution spatial concentration measurements, and by the lack of simplified analytical models that connect spectral modulations in the turbulent kinetic energy (TKE) cascade to scalar spectra. Here, we report the first planar two-dimensional scalar concentration spectra (ϕ cc ) inside tall canopies derived from flow visualization experiments. These experiments were conducted within the deeper layers of a model canopy composed of densely arrayed cylinders welded to the bottom of a large recirculating water channel. We found that in the spectral region experiencing wake production, the ϕ cc exhibits directional scaling power laws. In the longitudinal direction (x), or the direction experiencing the largest drag force, the ϕ cc (k x ) was steeper than and followed an approximate at wavenumbers larger than the injection scale of wake energy, where k x is the longitudinal wavenumber. In the lateral direction (y), the spectra scaled as up to the injection scale, and then decayed at an approximate power law. This departure from the classical inertial subrange scaling (i.e., k −5/3) was reproduced using a newly proposed analytical solution to a simplified scalar spectral budget equation. Near the velocity viscous dissipation range, the scalar spectra appear to approach an approximate k −3, a tantalizing result consistent with dimensional analysis used in the inertial-diffusive range. Implications to subgrid modelling for large-eddy simulations (LES) inside canopies are briefly discussed.  相似文献   

8.
The aqueous phase acid-catalyzed reaction of methanol (CH3OH) with nitric acid (HNO3) to yield methyl nitrate (CH3ONO2) under atmospheric conditions has been investigated using gas-phase infrared spectroscopy. Reactions were conducted in aqueous sulfuric acid solutions (50.5–63.6 wt.%) with [CH3OH] = 0.00005–0.005 M and [HNO3] = 0.02–0.21 M, at 278.2–328.6 K. Methyl nitrate production rates increased linearly with CH3OH and HNO3 concentrations and exponentially with sulfuric acid weight percent within the regime studied. Rates increased linearly with nitronium ion concentration, indicating that the reaction involves as the nitrating agent under these conditions. At 298 K, the rate of methyl nitrate production can be calculated from k obs [CH3OH][HNO3], where k obs  = 2.337 × 10−13(exp(0.3198*wt.% H2SO4)) when the solubility of CH3ONO2 in acidic solution is approximated by H* for pure water. The temperature dependence of the rate coefficient is related to solution composition, with activation energies of 59 and 49 kJ/mol at 51.1 and 63.6 wt.% H2SO4, respectively, when k is calculated from rate. The temperature dependence has also been parameterized for application to the atmosphere, but the small quantities of present in aerosol particles will result in methyl nitrate production rates too small to be of significance under most atmospheric conditions. An erratum to this article can be found at  相似文献   

9.
Spatial Variability of Flow Statistics within Regular Building Arrays   总被引:2,自引:2,他引:0  
Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of . The flow statistics analysed are mean streamwise velocity (), shear stress (), turbulent kinetic energy (k) and dispersive stress fraction (). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.  相似文献   

10.
A dataset from two campaigns conducted at the Vielsalm experimental site in Belgium was used as a basis for discussing some methodological problems and providing intermediate results on estimating CO2 advection. The analysis focused on the horizontal [CO2] gradient and on the vertical velocity w, the variables most affected by uncertainty. The sampling error for half-hourly horizontal [CO2] gradients was estimated to be 1.3 μmol mol−1. Despite this important random error for half-hour estimations of [CO2], the mean horizontal [CO2] gradients in advective conditions were shown to be representative at the ecosystem scale and to extend only to the lowest part of a drainage sub-layer, which developed in the trunk space. By contrast, under daytime conditions, this gradient was shown to be more sensitive to local source heterogeneities. The estimation of the short-term averaged vertical velocity ( was the greater source of error when computing advection terms. The traditional correction methods used to obtain are discussed and a (co)sine correction is tested to highlight the instrumental origin of the offset in w. A comparison of measurements by sonic anemometers placed close together above the canopy showed that the uncertainty on was 0.042 m s−1, which is of the same order of magnitude as the velocity itself. In addition, as the drainage sub-layer is limited to the lowest part of the canopy, the representativeness of is questionable. An alternative computation using the divergence of the horizontal wind speed in the trunk space produced a estimation that was four times lower than the single-point measurement. However, this value gives a more realistic estimate of the vertical advection term and improves the CO2 budget closure at the site.  相似文献   

11.
The goal of this study is to determine the chemical composition of rain, in the wider region of Athens, Greece for the time period 1st September 2001 to 31st August 2002. Two model automatic rain samplers were installed in the Meteorological Station of Laboratory of Climatology (latitude: 37° 58′ N, longitude: 23° 47′ E) inside the Athens University Campus and in a site at Heraklio Attica, a northern suburb of Athens (latitude: 38° 03′ N, longitude: 23° 45′ E). The concentrations (μeq l−1) of the major cations (H+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, , και ), as well as pH and conductivity of rain in 39 total samples were determined. The figures of pH range from 6.4 to 8.4 and conductivity from 8 to 207 μS cm−1. The analysis showed that Ca2+ ions are abundant within all examined samples, while and present the highest concentrations from the anions. In order to find out the origin of the air masses, the air mass back trajectories were calculated. Five sectors of the origin of air masses were revealed: the North, the South, the Local, the West and the East sector. Multivariate methods included Factor Analysis and Discriminant Analysis were applied to the examined ion concentrations and three main factors were extracted, which discriminated the ions according to their origin. The first group of ions is interpreted as the result of the anthropogenic activity, the second group represents the acidity–alkalinity independently of their source and the third one the marine influence.  相似文献   

12.
We describe one-dimensional (1D) simulations of the countergradient zone of mean potential temperature observed in the convective boundary layer (CBL). The method takes into account the third-order moments (TOMs) in a turbulent scheme of relatively low order, using the turbulent kinetic energy equation but without prognostic equations for other second-order moments. The countergradient term is formally linked to the third-order moments and , and a simple parameterization of these TOMs is proposed. It is validated for several cases of a dry CBL, using large-eddy simulations that have been realized from the MESO-NH model. The analysis of the simulations shows that TOMs are responsible for the inversion of the sign of in the higher part of the CBL, and budget analysis shows that the main terms responsible for turbulent fluxes and variances are now well reproduced.  相似文献   

13.
The precipitation events (n = 91), collected for 3 years (2000–2002) during the period of SW-monsoon (Jun–Aug) from an urban site (Ahmedabad, 23.0°N, 72.6°E) of a semi-arid region in western India, are found to exhibit characteristic differences in terms of their solute contents. The low solute (<700 μeq L−1) events are either marked by heavy precipitation amount or successive events collected during an extended rain spell; whereas light precipitation events occurring after antecedent dry period are characterized by high solutes (>700 μeq L−1). The ionic composition of low solute events show large variability due to varying contribution of anthropogenic species (: 1%–74%; : 1%–25%; and : 8%–68%) to the respective ion balance. In high solute events, ionic abundances are dominated by mineral dust (Ca2+ and ) and sea-salts (Na+ and Cl). These differences are also reflected in the pH of low solute events (range: 5.2–7.4, VWM: 6.4) and high solute events (range: 6.6–8.2, VWM: 7.3). The comparison of Ca2+/Na+ and nss- ratios (on equivalent basis) in rain and aerosols suggests that the ionic composition of high solute events is influenced by below-cloud scavenging; whereas evidence for in-cloud scavenging is significantly reflected in low solute events. The annual wet-deposition fluxes of and are 330 and 480 mg m−2 y−1, respectively, in contrast to their corresponding dry-deposition fluxes (14 and 160 mg m−2 y−1); whereas wet and dry removal of Ca2+, Mg2+ and are comparable.  相似文献   

14.
This article presents a complete study of the diurnal chemical reactivity of the biogenic volatile organic compound (BVOC), 2-methyl-3-buten-2-ol (MBO) in the troposphere. Reactions of MBO with OH and with ozone were studied to analyse the respective parts of both processes in the global budget of MBO atmospheric reactivity. They were investigated under controlled conditions for pressure (atmospheric pressure) and temperature (298 ± 2 K) using three complementary European simulation chambers. Reaction with OH radicals was studied in the presence of and in the absence of NO x . The kinetic study was carried out by relative rate study using isoprene as a reference. The rate constant found for this reaction was molecule−1 cm3 s−1. FTIR spectroscopy, DNPH- and PFBHA-derivatisation analyses were performed for reactions with both OH radicals and ozone. In both reactions, the hydroxycarbonyl compound, 2-hydroxy-2-methylpropanal (HMPr) was positively identified and quantified, with a yield of in the reaction with OH, and a yield of and 0.84 ± 0.08 in the reaction with ozone under dry (HR < 1%) and humid conditions (HR = 20%–30%). A primary production of two other carbonyl compounds, acetone , and formaldehyde was found in the case of the dry ozonolysis experiments. Under humid conditions, only formaldehyde was co-produced with HMPr as a primary carbonyl compound, with a yield of . For the reaction with OH, three other carbonyl compounds were detected, acetone , formaldehyde and glycolaldehyde . In addition some realistic photo-oxidation experiments were performed to understand in an overall way the transformations of MBO in the atmosphere. The realistic photo-oxidation experiments were conducted in the EUPHORE outdoor simulation chamber. It was found that this compound is a weak secondary aerosol producer (less than 1% of the carbon balance). But it was confirmed that it is a potentially significant source of acetone, Δ[Acetone]/Δ[MBO] = 0.45. With our experimental conditions ([MBO]0 = 200 ppb, [NO]o = 50 ppb), an ozone yield of Δ[O3]/Δ[MBO] = 1.05 was found.  相似文献   

15.
Time Scales in the Unstable Atmospheric Surface Layer   总被引:2,自引:2,他引:0  
Calculation of eddy covariances in the atmospheric surface layer (ASL) requires separating the instantaneous signal into mean and fluctuating components. Since the ASL is not statistically stationary, an inherent ambiguity exists in defining the mean quantities. The present study compares four methods of calculating physically relevant time scales in the unstable ASL that may be used to remove the unsteady mean components of instantaneous time signals, in order to yield local turbulent fluxes that appear to be statistically stationary. The four mean-removal time scales are: (t c ) based on the location of the maximum in the ogive of the heat flux cospectra, () the location of the zero crossing in the multiresolution decomposition of the heat flux, (t *) the ratio of the mixed-layer depth over the convective velocity, and () the convergence time of the vertical velocity and temperature variances. The four time scales are evaluated using high quality, three-dimensional sonic anemometry data acquired at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility located on the salt flats of Utah’s western desert. Results indicate that and , with t c achieving values about 2–3 times greater than t *. The sensitivity of the eddy covariances to the mean-removal time scale (given a fixed 4-h averaging period during midday) is also demonstrated.  相似文献   

16.
The two-year (1999–2000) rainwater chemistry at two monitoring sites in nearby coastal areas [Taiwan (TW) and Hong Kong (HK)] within the Western Pacific region has been studied. The volume weighted average pH values for the entire sampling period in TW and HK were 4.6 and 4.2, respectively. Sea salt Na+ and Cl were the most abundant species in the TW samples but and H+ were the most abundant in the HK samples. The sea salt and concentrations at TW were higher than those at HK both in the cold and warm seasons. Chloride depletion was minimal in the rainwater samples at both sites. Non seasalt- was associated with . Under the influence of the East Asian Winter Monsoon, the back-trajectory studies revealed that elevated anthropogenic species concentrations were associated with trajectories (1) very near to the continental boundary layer of Mainland China; or (2) along the coastline of Eastern China where large cities/industrial areas are located or (3) passing through the region of stagnant air over Northern/Eastern China. The lowest anthropogenic and crustal species concentrations measured in HK are associated with the summer monsoon and are attributed not only to the clean marine air masses but also to the relatively low SO2, NO x and NH3 emissions from the South/ South East Asian countries, as well as infrequent biomass burning activities and wet scavenging at sources during the summer months. Approaching tropical cyclones led to the lowest pH values (4.2 in TW and 3.8 in HK) amongst the other weather categories. The findings here have been compared with other studies within East Asia and elsewhere.  相似文献   

17.
We estimated the turbulent kinetic energy (TKE) dissipation rate for thirty-two 1-h intervals of unstable stratification covering the stability range 0.12 ≤ −z/L ≤ 43 (z/L is the ratio of instrument height to the Obukhov length), by fitting Kolmogorov’s inertial subrange spectrum to streamwise spectra observed over a desert flat. Estimated values are compatible with the existence of local equilibrium, in that the TKE dissipation rate approximately equalled the sum of shear and buoyant production rates. Only in the neutral limit was the turbulent transport term in the TKE budget measured to be small.  相似文献   

18.
In order to quantitatively investigate the role of leads and sea-ice in air-mass modification, aircraft observations were conducted over the partially ice-covered Sea of Okhotsk. We investigated two cold-air outbreak events with different sea-ice concentrations. In both cases, the difference between the temperatures of surface air and the sea surface (ΔT) dropped rapidly with the accumulated fetch-width of leads up to about 35-40 km, and then decreased very slowly. The surface sensible heat flux originating from open water was about 300 W m−2 within a few kilometres from the coast and decreased with increasing accumulated fetch-width. The sensible heat flux was about 100 W m−2 on average. These results indicate that the downwind air-mass modification depends mainly on the total (accumulated) extent of open water. The total buoyancy flux calculated by the joint frequency distribution method correlated very well with ice concentration. Such a relationship was not clear in the case of the moisture flux . The ratio between rising thermals and cold downdrafts differed significantly between upwind and downwind regions; that is, the buoyancy flux was dominated by in the developing stage of the boundary layer, while also became important after the development of the boundary layer.  相似文献   

19.
We address some of the methodological challenges associated with the measurement of turbulence and use of scintillometers in the urban roughness sublayer (RSL). Two small-aperture scintillometers were located near the roof interface in a densely urbanized part of Basel, Switzerland, as part of the Basel Urban Boundary-Layer Experiment (BUBBLE) in the summer of 2002. Eddy correlation instruments were co-located near the mid-point of each scintillometer path for data verification purposes. The study presents the first values of the inner length scale of turbulence (l 0) and the refractive index structure parameter of air for a city and demonstrates the influence of mechanical driven turbulence on dissipation. Comparison of dissipation values determined from the two approaches show large scatter that is possibly due to the spatial inhomogeneity of the turbulence statistics within the RSL. Velocity and temperature spectra display a −2/3 slope in the inertial subrange, although the spectral ratio is less than the theoretical prediction of 4/3 expected for isotropy. Conventional Monin–Obukhov equations used to calculate fluxes from the scintillometer were replaced with urban forms of the equations. The results suggest that the scintillometer may be an appropriate tool for the measurement of sensible heat flux (Q H ) above the rooftops given a suitable determination of the effective measurement height.  相似文献   

20.
Large-eddy simulations of the neutrally stratified flow over the Askervein Hill were performed, to improve the knowledge of the flow obtained from field measurements and numerical simulations with Reynolds averaged Navier-Stokes (RANS) methods. A Lagrangian dynamic subgrid model was used but, to avoid the underdissipative character near the ground, it was merged with a damped Smagorinsky model. Simulations of a flat boundary-layer flow with this subgrid model showed that the turbulent vertical motions and shear stress were better resolved using grids with a stream to spanwise aspect ratio Δx / Δy = 2 than with an aspect ratio Δx / Δy = 1. Regarding the flow over the Askervein Hill, it was found that large-eddy simulations provide an acceptable solution for the mean-velocity field and better predictions of the turbulent kinetic energy in the upstream side of the hill than the model. However, as with the model, grid convergence was not achieved in the lee side and the size of the zone with reversed flow increased with the grid refinement. Nevertheless, the existence of the intermittent separation predicted with unsteady RANS in part one of this work seems unquestionable, due to the deceleration of the flow. In our opinion, a better modelling of the decelerating boundary layer in the lee side is required to improve the results obtained using equilibrium assumptions and achieve grid convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号