首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文使用1961~1995年逐月青藏高原地区大气视热量源汇<Ql>资料、1961~1990年青藏高原地区积雪日数和积雪深度资料、美国NCEP/NCAR的再分析资料以及1975~1994年全球OLR资料,讨论了高原大气热状况年际变化及其与大气环流的关系,发现:高原地区大气热源年际变化明显,其中春季和秋季高原地区<Ql>的变率最大,并且水平分布很不均匀;当冬季高原冷源弱(或强)时,东亚大槽位置偏东(或西),对应着东亚强(或弱)的冬季风;夏季高原热源强(或弱)的年份,在高原及其邻近地区的对流层中、低层为偏差气旋环流(或反气旋环流),在中国长江流域低层为异常的西南风(或东北风),对应着东亚强(或弱)的夏季风,夏季高原热源强度还与南亚高压的强度和位置有关;春季4月的积雪状况与夏季高原大气热源强度有明显关系;夏季高原热源与同期青藏高原东南部、孟加拉湾、中南半岛、东南亚、中国西南部、长江流域和从黄海到到日本海一带对流有明显正相关  相似文献   

2.
基于1979~2017年欧洲中期天气预报中心(ECMWF)提供的ERA-Interim逐日再分析资料和热力学方程,本研究估算了大气视热源,分析研究了青藏高原夏季大气视热源的异常与中国东部降水关系的年代际变化,以及青藏高原大气视热源影响我国东部夏季降水的物理机制。结果表明:(1)高原热源东、西部反相变化模态的重要性发生了年代际转变,表现为由1994年之前方差贡献相对小的第二变异模态变为1994之后方差贡献明显增大而成为第一主导变异模态。(2)青藏高原夏季大气视热源的东、西反相变化模态与中国东部降水的关系存在年代际变化。1993年之前和2008年之后,高原大气视热源的异常分别仅与长江下游降水和长江中游降水异常存在密切的联系;而在1994~2007年,其对长江流域及附近区域和华南地区的夏季降水的影响显著,具体表现为,当高原夏季大气视热源异常表现为东强西弱(东弱西强)时,长江中上游、江淮地区的降水偏多(少),华南地区降水偏少(多)。(3)高原大气视热源显著影响我国东部夏季降水主要是通过经高原上空发展加强的天气系统东移过程影响长江流域及附近地区的降水,以及通过垂直环流影响华南地区的降水。  相似文献   

3.
本文使用1961~1995年逐月青藏高原地区大气机热量源汇<Q1>资料、1961~1990年青藏高原地区积雪日数和积雪深度资料、美国NCEP/ NCAR的再分析资料以及1975~1994年全球OLR资料,讨论了高原大气热状况年际变化及其与大气环流的关系,发现:高原地区大气热源年际变化明显,其中春季和秋季高原地区<Q1>的变率最大,并且水平分布很不均匀;当冬季高原冷源弱(或强)时,东亚大槽位置偏东(或西),对应着东亚强(或弱)的冬季风;夏季高原热源强(或弱)的年份,在高原及其邻近地区的对流层中、低层为偏差气旋环流(或反气旋环流),在中国长江流域低层为异常的西南风(或东北风),对应着东亚强(或弱)的夏季风,夏季高原热源强度还与南亚高压的强度和位置有关;春季4月的积雪状况与夏季高原大气热源强度有明显关系;夏季高原热源与同期青藏高原东南部、孟加拉湾、中南半岛、东南亚、中国西南部、长江流域和从黄海到到日本海一带对流有明显正相关。  相似文献   

4.
利用1948-2002年NCEP/NCAR逐日再分析及月平均资料,分析了春季青藏高原地区大气热源的气候分布和高原东部大气热源的年代际变化特征及其异常与东亚夏季大气环流关系的年代际变化.结果表明:春季青藏高原东部大气热源在1965年存在加强突变,且1970年以后热源加强趋势十分显著.此外,春季青藏高原东部大气热源异常与东亚夏季风强弱具有年代际关系,表现为1977/1978年前春季高原东部大气热源与东亚夏季风存在负相关关系,1977/1978年后两者的关系不明显.  相似文献   

5.
利用1951~2000年NCEP/NCAR逐日再分析资料计算了大气热源,并对夏季青藏高原东部大气热源异常和西太平洋暖池区大气热源异常对中国夏季降水的影响作了对比分析研究.结果表明,如果高原东部夏季大气热源显著偏强(偏弱),则长江流域地区的夏季降水显著偏多(偏少),而华南东部地区夏季降水偏少(偏多).菲律宾南部附近的热带西太平洋暖池区上空夏季大气热源显著偏强(偏弱)时,同期长江中下游地区偏涝(偏旱),而华南地区、江苏北部-山东南部则偏旱(偏涝).夏季青藏高原东部大气热源异常和热带西太平洋暖池区大气热源异常对中国夏季降水的影响是有差别的,中国的夏季降水受高原东部大气热源影响的显著范围要比受西太平洋暖池区大气热源影响的显著范围要大.无论是高原热源异常还是西太平洋暖池热源异常,东亚地区的大气环流都存在类似EAP型的遥相关波列.大气热源的异常是通过直接影响垂直运动场的异常,进而影响到我国的夏季降水的异常.夏季高原热源或西太平洋暖池热源偏强(偏弱)时,西太平洋副高的脊线比常年位置偏南(偏北).  相似文献   

6.
王黎娟  葛静 《大气科学》2016,40(4):853-863
利用1983~2012年NCEP/NCAR逐日再分析资料对夏季青藏高原大气热源和南亚高压东西振荡的低频特征以及两者的关系进行了讨论,发现夏季青藏高原东部大气热源与南亚高压纬向运动的主要低频周期都是10~20 d。在高原东部大气热源10~20 d振荡峰值位相,青藏高原上空被低频气旋控制,高原西部被低频反气旋控制,导致南亚高压主要高压中心向西移动呈伊朗高压模态;在大气热源10~20 d振荡谷值位相,低频环流形势完全相反,青藏高原上空被低频反气旋控制,高原西部被低频气旋控制,致使南亚高压主要高压中心向东移动呈青藏高压模态。高原热力场异常导致其上空暖中心变化从而引起的高层风场变化可以解释南亚高压的东西振荡。  相似文献   

7.
基于NCEP/NCAR 1968~2009年逐月再分析资料,采用倒算法,对夏季青藏高原东部大气热源的长期变化进行了计算,结果发现:(1)夏季青藏高原东部大气热源存在10a左右的时间尺度变化周期;(2)夏季青藏高原东部大气热源偏强时,四川盆地东部及重庆地区多雨,气温偏低;当夏季青藏高原东部大气热源偏弱时,四川盆地东部及重庆地区容易发生高温干旱;(3)夏季青藏高原东部大气热源通过直接影响垂直上升运动场的异常,同时影响周围地区的大气环流形势,异常强迫500hPa副热带高压,进而影响到四川盆地东部及重庆地区的夏季气候。  相似文献   

8.
青藏高原地区5月热力差异和后期夏季北疆降水的联系   总被引:2,自引:0,他引:2  
基于美国国家环境预测中心/美国国家大气研究中心(NCEP/NCAR)再分析月平均资料和新疆70站降水资料,分析了1961~2010年5月青藏高原地区地表热力异常差异和新疆夏季降水的联系。奇异值分解(SVD)分析发现,当5月青藏高原视热源偏弱,高原西北部地区偏强时,北疆夏季降水偏多。定义了一个热力差异指数来表征两个区域热力异常的对比程度,发现考虑这种大尺度热力差异对比要比单一地区与区域气候有更为密切的联系。当热力差异指数为负时,即5月青藏高原视热源偏弱,其西北部视热源偏强时:(1)西亚副热带西风急流位置偏南;(2)500 h Pa中亚上空和贝加尔湖上空分别对应异常气旋和反气旋环流,在二者共同作用下,北疆上空盛行异常的偏南气流,有利于低纬度的暖湿气流北上,形成有利于降水的环流形势;(3)印度半岛上空为异常反气旋环流,中亚上空为异常气旋环流,形成北疆夏季降水水汽的两步型输送,阿拉伯海水汽被输送至中亚和新疆地区。偏相关分析发现,青藏高原热力异常主要影响对流层中高层大气环流和水汽输送的第二步环流条件,高原西北部热力异常则影响水汽输送的第一步环流条件。  相似文献   

9.
春季青藏高原热力异常与前冬大气环流的关系   总被引:2,自引:1,他引:1  
利用1948-2010年NCEP/NCAR春季逐日再分析资料,采用倒算法计算了青藏高原地区大气热量源汇的值,分析了春季青藏高原地区大气热源的气候变化特征及春季高原热力异常与前冬大气环流的关系。结果表明:春季青藏高原东部和西部为大气热源变化的活跃区域;春季青藏高原东部和西部大气热源变化表现出反相关的关系;东亚冬季风的强弱对春季青藏高原热源的异常有一定的影响。  相似文献   

10.
春夏东亚大气环流年代际转折的影响及其可能机理   总被引:2,自引:0,他引:2  
本文通过多变量联合经验正交分解(MV-EOF)方法揭示了近30年(1979~2010年) 春季和夏季东亚大气环流所发生的年代际转折及其与中国南方降水年代际季节反相变化的内在联系,探讨了局地性大气热源年代际变化影响东亚大气环流年代际转折的可能机理.结果表明:(1)东亚大气环流春季第一模态和夏季第二模态在90年代中期都发生了明显的年代际转折;(2)与春季大气环流第一模态和夏季大气环流第二模态年代际转折相对应的是中国南方降水明显的年代际季节反相变化,即春季降水年代际减少,夏季降水年代际增多;(3)春季青藏高原和夏季贝加尔湖地区大气热源年代际变化对东亚大气环流年代际转折有一定贡献,是造成中国南方降水年代际季节反相变化的直接原因;(4)春季青藏高原大气热源的年代际减弱,使得高原东南侧的西南风减弱,导致中国南方上空水汽输送不足,春季降水减少.夏季贝加尔湖大气热源偶极型分布由“南负北正”转变为“南正北负”,由此在贝湖上空激发高压异常,使得夏季雨带北进受阻而停滞南方,造成中国南方夏季降水增多.  相似文献   

11.
The propagation and underlying mechanisms of the boreal summer quasi-biweekly oscillation (QBWO) over the entire Asian monsoon region are investigated, based on ECMWF Interim reanalysis (ERA-Interim) data, GPCP precipitation data, and an atmospheric general circulation model (AGCM). Statistical analyses indicate that the QBWO over the Asian monsoon region derives its main origin from the equatorial western Pacific and moves northwestward to the Bay of Bengal and northern India, and then northward to the Tibetan Plateau (TP) area, with a baroclinic vertical structure. Northward propagation of the QBWO is promoted by three main mechanisms: barotropic vorticity, boundary moisture advection, and surface sensible heating (SSH). It is dominated by the barotropic vorticity effect when the QBWO signals are situated to the south of 20°N. During the propagation taking place farther north toward the TP, the boundary moisture advection and SSH are the leading mechanisms. We use an AGCM to verify the importance of SSH on the northward propagation of the QBWO. Numerical simulations confirm the diagnostic conclusion that the equatorial western Pacific is the source of the QBWO. Importantly, the model can accurately simulate the propagation pathway of the QBWO signals over the Asian monsoon region. Simultaneously, sensitivity experiments demonstrate that the SSH over northern India and the southern slope of the TP greatly contributes to the northward propagation of the QBWO as far as the TP area.  相似文献   

12.
The quasi-biweekly oscillation (QBWO) is the second most dominant intraseasonal mode for circulation over the Northwestern Pacific (WNP) during boreal summer. In this study, we investigated how the QBWO modulates tropical cyclone (TC) activities over the WNP from dynamic and thermodynamic perspectives. The propagation of the QBWO can be divided into four phases through empirical orthogonal function analysis of the vorticity at 850 hPa, which was proven to be effective in extracting the QBWO signal. TC generation and landings are significantly enhanced during the active period (phases 1 and 2) relative to the inactive period (phases 3 and 4). Composite analyses show the QBWO could significantly modulate TC activity as it propagates northwestward by changing the atmospheric circulation at both high and low levels. Cumulus convection provides an important link between TCs and the QBWO. The major component of the atmosphere heat source is found to be the latent heat release of convection. The condensation latent heat centers, vertical circulation, and water vapor flux divergence cooperate well during different phases of the QBWO. The vertical profile of the condensation latent heat indicates upper-level heating (cooling) during the active (inactive) phases of the QBWO. Thus, the northwestward propagation of the QBWO can modulate TC activity by affecting the configuration of atmospheric heating over the WNP.  相似文献   

13.
This study investigates characteristics of the convective quasi-biweekly oscillation(QBWO) over the South China Sea(SCS) and western North Pacific(WNP) in spring, and the interannual variation of its intensity. Convective QBWO over the WNP and SCS shows both similarities and differences. Convective QBWO over the WNP originates mainly from southeast of the Philippine Sea and propagates northwestward. In contrast, convective QBWO over the SCS can be traced mainly to east of the Philippines and features a westward propagation. Such a westward or northwestward propagation is probably related to n = 1 equatorial Rossby waves. During the evolution of convective QBWO over the WNP and SCS, the vertical motion and specific humidity exhibit a barotropic structure and the vertical relative vorticity shows a baroclinic structure in the troposphere. The dominant mode of interannual variation of convective QBWO intensity over the SCS–WNP region in spring is homogeneous. Its positive phase indicates enhanced convective QBWO intensity accompanied by local enhanced QBWO intensity of vertical motion throughout the troposphere as well as local enhanced(weakened) QBWO intensity of kinetic energy, vertical relative vorticity,and wind in the lower(upper) troposphere. The positive phase usually results from local increases of the background moisture and anomalous vertical shear of easterlies. The latter contributes to the relationship between the dominant mode and QBWO intensities of kinetic energy, vertical relative vorticity, and wind. Finally, a connection between the dominant mode and the sea surface temperature anomalies in the tropical Pacific Ocean is demonstrated.  相似文献   

14.
段安民  张萍 《大气科学》2022,46(2):455-472
青藏高原(以下简称高原)大气热源对亚洲夏季风爆发、演变、推进,乃至全球气候系统都有重要影响,因此近年来高原大气热源变异机理也日益受到关注。本文在回顾已有关于不同季节高原热源变异原因的研究基础上,利用1980~2018年日本气象厅再分析数据JRA55(Japanese 55-year Reanalysis),对逐月高原大气总热源的年际变率进行分类,并进一步探究了影响不同类别高原大气总热源的异常大尺度环流系统及海温驱动因子。除了传统上受关注的“冬季型”和“夏季型”以外,本文还提出了“早春型”和“过渡型”两种高原大气热源变率模态。总体而言,高原大气总热源年际变率以降水引起的凝结潜热异常为主,其中“冬季型”及“早春型”高原大气热源异常中心位于高原西部,主要受到中高纬遥相关波列的影响。此外,“冬季型”还受到厄尔尼诺—南方涛动(El Ni?o-Southern Oscillation, ENSO)及印度洋偶极子(Indian Ocean Dipole, IOD)的影响。“夏季型”高原大气热源呈东西偶极型反相变化,最大异常中心位于高原东南部,主要受北大西洋涛动(North Atlantic Oscillation, NAO)的影响;“过渡型”高原大气热源呈南北偶极型反相变化,受热带太平洋—印度洋海表温度异常的共同影响。因此,不同背景环流下高原热源年际变率的驱动因子存在明显差异。  相似文献   

15.
Shanghai experienced the longest rainy days in 2018/2019 winter since 1988. The physical cause of such an unusual climate condition was investigated through the diagnosis of observational data. From a seasonal perspective, a long persistent rainy winter was often associated with an El Ni?o condition in the equatorial Pacific. This abnormal oceanic condition induces a remote teleconnection pattern with pronounced low-level southerly anomalies over East China.The wind anomalies transported moisture from tropical oceans and caused persistent rainfall in East Asia. Meanwhile, the local rainfall time series exhibited a strong quasi-biweekly oscillation (QBWO). Three persistent rainy events were identified in the 2018/2019 winter and they all occurred during the active phase of the QBWO. The first two events were associated with a low pressure anomaly west of Shanghai. Southerly anomalies associated with the low pressure system advected high mean moisture into central eastern China, leading to the persistent rainfall there.The third event was associated with a high pressure anomaly in lower troposphere to the east of Shanghai, which induced anomalous southerlies to its west, favoring the occurrence of rainfall in Shanghai. The result suggests the importance of high-frequency variability in affecting seasonal rainfall anomalies.  相似文献   

16.
Shanghai experienced the longest rainy days in 2018/2019 winter since 1988. The physical cause of such an unusual climate condition was investigated through the diagnosis of observational data. From a seasonal perspective, a long persistent rainy winter was often associated with an El Niño condition in the equatorial Pacific. This abnormal oceanic condition induces a remote teleconnection pattern with pronounced low-level southerly anomalies over East China. The wind anomalies transported moisture from tropical oceans and caused persistent rainfall in East Asia. Meanwhile, the local rainfall time series exhibited a strong quasi-biweekly oscillation (QBWO). Three persistent rainy events were identified in the 2018/2019 winter and they all occurred during the active phase of the QBWO. The first two events were associated with a low pressure anomaly west of Shanghai. Southerly anomalies associated with the low pressure system advected high mean moisture into central eastern China, leading to the persistent rainfall there. The third event was associated with a high pressure anomaly in lower troposphere to the east of Shanghai, which induced anomalous southerlies to its west, favoring the occurrence of rainfall in Shanghai. The result suggests the importance of high-frequency variability in affecting seasonal rainfall anomalies.  相似文献   

17.
The modulation of the intensity of nascent Tibetan Plateau vortices(ITPV) by atmospheric quasi-biweekly oscillation(QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former,with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases,indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.  相似文献   

18.
利用美国海洋大气局(National Oceanic and Atmospheric Administration,NOAA)逐日对外长波辐射(Outgoing Longwave Radiation,OLR)资料、欧洲中期天气预报中心ERA-Interim再分析资料和美国联合台风预警中心(Joint Typhoon Warning Center,JTWC)台风路径最佳资料,考察了热带大气夏季准双周振荡(Quasi-biweekly Oscillation,QBWO)对西北太平洋台风生成的影响,揭示了QBWO对西北太平洋台风生成位置、频数和发生概率的显著影响。结果表明:(1)伴随QBWO对流活跃中心的西北方向的传播,西北太平洋台风生成位置也呈现相应移动;(2)QBWO对流活跃位相期间,台风频数偏多,发生概率偏高,而在QBWO对流抑制位相,台风频数偏少,发生概率偏低;(3)台风生成潜在指数(Genesis Potential Index, GPI)收支分析指出了对流层低层绝对涡度和中层相对湿度是调制整个海域台风生成的两个重要的大尺度环境因子;(4)GPI的收支分析还表明了大尺度环境因子对台风生成的影响对QBWO的位相与区域具有显著的依赖性。在QBWO对流活跃位相期间,南海中北部区域低层涡度对GPI正异常贡献最为显著;在菲律宾以东海域,对流层中层相对湿度对GPI正异常贡献最为显著;在关岛附近海域,主要的贡献来自于低层绝对涡度与非线性项,且它们对GPI负异常的贡献相当。在QBWO对流抑制位相,南海中北部区域GPI的负异常贡献主要来自于低层绝对涡度;在菲律宾以东海域GPI负异常贡献主要来自中层相对湿度;关岛附近海域的GPI正异常的主要贡献来自于垂直风切变和非线性项。   相似文献   

19.
于堃  沈新勇  张驰  李小凡 《气象科学》2020,40(3):333-340
利用NCL滤波方法将NCEP提供的FNL风场资料分离出天气尺度,准双周振荡(QBWO,Quasi-Biweekly Oscillation)和热带季节内振荡(MJO,Madden-Julian Oscillation)环流场,研究不同时间尺度环流对台风"天鹅"(1515)突变路径的影响。台风路径的特征能够分3个阶段,其中第二阶段台风发生突然转折。第一阶段,天气尺度上台风东侧的反气旋和QBWO环流场中的波列共同引导台风向西偏北方向运动,而MJO环流场中的引导气流作用较小;第二阶段,天气尺度上台风东侧的反气旋和低频环流场中台风附近的气旋共同促进了"天鹅"近90°的突然转向,其中,高、低频分量分别促使台风突然向北、向东转向;第三阶段,天气尺度上的气旋与反气旋、QBWO环流场中的反气旋以及MJO环流场中的脊共同引导"天鹅"向东北方向运动,其中MJO环流场中气旋附近的偏东风促使"天鹅"向西运动,但由于它被天气尺度上强烈的偏西风所抵消,故"天鹅"仍向东运动。  相似文献   

20.
There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau (TP) and the low-frequency oscillation of atmospheric circulation. However, the research on low-frequency oscillation of heat source over TP and its impact on atmospheric circulation are not fully carried out. By using the vertically integrated apparent heat source which is calculated by the derivation method, main oscillation periods and propagation features of the summer apparent heat source over the eastern TP (Q1ETP) are diagnosed and analyzed from 1981 to 2000. The results are as follows: (1) Summer Q1ETP has two significant oscillation periods: one is 10-20d (BWO, Quasi-Biweekly Oscillation) and the other is 30-60d (LFO, Low-frequency Oscillation). (2) A significant correlation is found between Q1ETP and rainfall over the eastern TP in 1985 and 1992, showing that the low-frequency oscillation of heat source is likely to be stimulated by oscillation of latent heat. (3) The oscillation of heat source on the plateau mainly generates locally but sometimes originates from elsewhere. The BWO of Q1ETP mainly exhibits stationary wave, sometimes moves out (mainly eastward), and has a close relationship with the BWO from the Bay of Bengal. Showing the same characteristics as BWO, the LFO mainly shows local oscillation, occasionally propagates (mainly westward), and connects with the LFO from East China. In summary, more attention should be paid to the study on BWO of Q1ETP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号