首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
利用2011年2—8月逐日降水量序列及东亚地区850 h Pa经向风场资料建立多变量时滞回归(multivariable lagged regression,MLR)模型,对5—7月江西降水10~30 d和50~70 d低频分量分别进行延伸期逐日预报实验。结果表明:2011年江西降水存在显著的10~30 d和50~70 d的振荡周期。降水50~70 d低频分量延伸期预报技巧明显优于10~30 d低频分量延伸期预报技巧,平均预报技巧高达0.86。降水50~70 d低频分量延伸期预报可准确预报降水低频位相的正负转换,能为江西延伸期强降水过程发生的时段预测提供预报信号。  相似文献   

2.
杨秋明 《气象》2015,41(7):881-889
用长江下游降水低频分量和南半球中纬度地区850 hPa低频经向风主成分,建立多变量时滞回归 (multivariable lagged regression, MLR)模型,对2013年6—7月长江下游降水低频分量进行延伸期逐日变化预报试验。结果表明, 20~30 d时间尺度的长江下游低频降水预测时效可达25~30 d。进一步对2001—2012年资料分别构建的MLR模型的历史回报预测试验表明,对于20~30 d振荡较强和正常的年份,南半球中纬度绕球遥相关(south circum global teleconnection, SCGT)波列是预测初夏长江下游低频降水未来30 d变化的显著信号。基于南半球SCGT的发展和演变,对于提前20 d以上预报长江下游地区2013年7月上旬持续强降水过程异常变化过程很有帮助,南半球热带外环流低频变化是影响初夏长江下游地区延伸期强降水变化的重要因子之一。  相似文献   

3.
杨秋明 《气象学报》2014,72(3):494-507
用长江下游降水低频分量和环流低频主成分,构造多变量时滞回归模型(MLR)和主成分复数自回归模型(PC-CAR)的混合预报模型(MLR/PC-CAR),对长江下游降水低频分量进行延伸期逐日变化预报,延长预报时效。通过2011年6—8月预测试验表明,20—30 d时间尺度的长江下游低频降水预测时效可达50 d左右,采用南半球中高纬度地区850 hPa低频经向风的主成分作为预测因子的模型的预测精度明显高于东亚地区低频经向风作为预测因子的模型。这表明在20—30 d时间尺度上,长江下游降水与南半球中纬度绕球遥相关(SCGT)型有关的主分量的时滞相关更加密切。进一步对于较强20—30 d振荡的多年资料构建的MLR/PC-CAR混合模型预测试验表明,SCGT是预测夏季长江下游低频降水未来50 d变化的显著信号。基于SCGT的发展和演变,对于把握类似长江下游地区2011年6月初旱涝急转和7月中旬持续降水和强降水过程异常变化过程很有帮助,SCGT可以作为夏季长江下游20—30 d低频降水和强降水过程进行延伸期预报的主要可预报性来源之一。  相似文献   

4.
利用2011年2-8月逐日降水量序列及东亚地区850hPa经向风场资料建立多变量时滞回归(multivariable lagged regression, MLR)模型,对5-7月江西降水10-30d和50-70d低频分量分别进行延伸期逐日预报实验。结果表明:2011年江西降水存在显著的10-30d和50-70d的振荡周期。降水50-70d低频分量延伸期预报技巧明显优于10-30d低频分量延伸期预报技巧,平均预报技巧高达0.86。降水50-70d低频分量延伸期预报可准确预报降水低频位相的正负转换,能为江西延伸期强降水过程发生的时段预测提供预报信号。  相似文献   

5.
基于低频振荡特征的夏季江淮持续性降水延伸期预报方法   总被引:7,自引:1,他引:6  
陈官军  魏凤英 《大气科学》2012,36(3):633-644
本文利用1981~2008年我国南方地区200站逐日降水量、NCEP再分析资料和NCEP气候预报系统 (CFS) 的模式回算数据, 针对降水低频信号, 分析了江淮地区夏季降水的延伸期可预报性, 并选取对江淮持续性强降水有显著影响的东亚环流指数作为预报因子, 以降水20~50天低频分量作为预报量, 进行了针对江淮地区夏季持续性强降水过程的延伸期预报试验。结果表明, 江淮地区夏季降水具有明显的20~50天周期的低频振荡特征。降水的20~50天低频振荡, 尤其是峰谷值位相的变化与实际降水集中期和中断期的交替有较好的关系, 研究20~50天降水低频分量的延伸预报, 对于江淮地区夏季持续性强降水过程的延伸预报有一定的指示意义。本文尝试提出一种基于大气环流低频信号和数值模式预报产品的动力与统计相结合的预报方法, 以期为江淮地区夏季持续性降水过程的延伸期预报提供参考。  相似文献   

6.
基于中国国家气象观测站的逐日降水资料、NCEP逐日全球再分析资料和NOAA逐日向外长波辐射资料,选取与10—30 d低频降水相关显著的热带、中高纬环流作为影响因子,针对1979—2013年江南4—6月延伸期低频降水,依照不同背景场下低频降水与影响因子之间的相关性,进行了预测试验。结果表明:江南4—6月降水以10—30 d的低频周期最为显著。印度洋、印尼附近的热带对流和欧亚高纬度地区的大气环流共同影响着我国江南4—6月低频降水,可作为延伸期降水的预测因子。当欧洲及西西伯利亚地区位势高度出现负距平、北美及贝湖以西附近位势高度正距平,且热带对流异常偏弱时,对应江南低频降水异常偏少,异常中心主要位于长江中下游地区; 30 d以上的大尺度500 h Pa低频位势高度场主要表现为3种空间分布型,根据这3种分布型可将逐日降水个例的大尺度背景场划分为3类,每种背景场下低频降水与热带、中高纬度环流因子在前期30 d内的相关特征均不同; 30 d以上时间尺度的500 h Pa低频环流可为10—30 d延伸期变化提供相对稳定的大尺度背景场,不同背景场下区域低频降水与相应低频环流之间的关系演变不同。考虑不同背景,其相关性增强,且显著相关超前的时间更长。  相似文献   

7.
中国东南部地区4-6月强降水的低频变化特征   总被引:3,自引:2,他引:1  
利用全国2 400多台站逐日降水资料,分析了中国东南部地区4—6月10~30 d低频强降水的时空变化特征。结果表明:4—6月10~30 d低频强降水的方差大值区在中国的长江及其以南地区,中心位于江南的中东部,东南部地区4—6月10~30 d低频强降水距平的第一模态反映该区域呈一致变化。功率谱分析表明第一模态时间变化的周期以10~30 d低频分量为主。根据区域强降水及其10~30 d低频强降水、区域强降水正交经验函数(EOF)分析的第一模态时间系数(PC1)及PC1的10~30 d低频分量的年际方差,结合它们两两之间逐年的相关系数,确定了区域强降水10~30 d强振荡典型年份。对典型年降水异常分布的方差分析,表明强振荡年区域总降水量异常主要是由10~30 d强降水的低频变化引起的。  相似文献   

8.
江苏省汛期强降水过程的延伸期预报试验   总被引:1,自引:1,他引:0  
蒋薇  孙国武  陈伯民  项瑛  陶玫 《气象科学》2012,32(S1):24-30
针对汛期延伸期降水预报问题,根据大气低频振荡特性,运用低频天气图预报方法,通过分析关键区低频天气系统(低频气旋和低频反气旋)的活动特征,建立低频系统与强降水过程间的对应关系,通过低频系统的活动特征来预报降水过程。在2011年7—9月江苏省延伸期强降水过程预报试验中,低频天气图预报方法的预报效果较好,且预报时效为10~30 d,可以在延伸期业务预报中加以应用。此外,还运用模式统计降尺度方法预报降水落区,为强降水过程的发生提供背景依据和参考信息,具有一定的实用意义。  相似文献   

9.
利用陕西省2008—2013年5—9月日降水资料及NCEP 500hPa的u、v风场资料,基于低频天气图的预报原理,统计降水时段500hPa风场上低频气旋和反气旋的空间分型、位置和出现次数,归纳出影响降水过程的9个高影响区,以及不同低频气旋和反气旋的配置类型与降水过程间的联系,通过低频系统的活动特征来预报降水过程。在2013—2015年陕西省延伸期强降水过程预报试验中,低频天气图预报方法的预报效果较好,且预报时效为10~30d,可以在延伸期预报业务中加以应用。  相似文献   

10.
2002年夏季东亚地区环流20—30 d主振荡型延伸期预报研究   总被引:3,自引:2,他引:1  
杨秋明  李熠  宋娟  黄世成 《气象学报》2012,70(5):1045-1054
用2002年3-9月逐日东亚地区850 hPa经向风场资料建立主振荡预测模型(POP),对影响长江下游地区强降水过程的主要低频经向风场(20-30 d时间尺度)的时空变化进行10-30 d延伸期独立预报试验.试验结果表明,在夏半年135次预测中提前20 d预报的相关预报技巧在0.50以上,很好地预报了夏季3次强降水过程对应的经向风的低频变化过程.对20-30 d振荡显著的多年资料预报试验表明,这些预测模型是预报低频环流时空演变的有效工具,对于提高未来3-4周长江下游强降水过程的预报准确率有重要意义.  相似文献   

11.
根据四川区域暴雨的定义,筛选2012~2016年的区域暴雨过程,选取850hPa的比湿(q)、850hPa经向风(v)2个因子,并应用NCEP资料计算30年的气候平均值和气候标准差,引入集合预报资料,计算四川暴雨个例各要素的标准化异常度和异常度概率。得到以下结论:(1)850hPa的比湿(q)、850hPa经向风(v)两个因子的48h集合最大预报异常度对四川盆东型暴雨更为适用,实况50mm以上降水落区一般都发生在850hPa比湿(经向风)异常度大值区,而对盆西型暴雨适用性不好;(2)在四川盆东型暴雨中,60%暴雨个例的实况暴雨中心,850hPa上比湿超出气候平均1个标准差的概率达到80%以上,超出1.5个标准差的概率到达50%以上。   相似文献   

12.
北方麦收期间连阴雨天气环流特征   总被引:15,自引:0,他引:15  
王秀文  李月安 《气象》2005,31(9):52-56
利用1980-2004年5月下旬至6月中旬北方麦收区30个代表站降水实况资料,连阴雨期间亚欧范围500hPa逐日形势图和500hPa高度平均图等,分析总结了近25年来北方麦收期间连阴雨的天气气候和环流形势特征;对北方麦收期间出现的连阴雨天气过程与环流形势和影响系统的关系进行初步探讨,确定连阴雨天气的概念模型。分析表明,阻塞高压形势且贝加尔湖附近伴有冷涡是造成连阴雨天气最主要的环流特征;在500hPa地转风υ场上,麦收区多处于南北风交界处;长连阴雨期间,850hPa东亚地区中低纬度盛行南风为主要特征。  相似文献   

13.
Quantile regression(QR) is proposed to examine the relationships between large-scale atmospheric variables and all parts of the distribution of daily precipitation amount at Beijing Station from 1960 to 2008. QR is also applied to evaluate the relationship between large-scale predictors and extreme precipitation(90th quantile) at 238 stations in northern China.Finally, QR is used to fit observed daily precipitation amounts for wet days at four sample stations. Results show that meridional wind and specific humidity at both 850 h Pa and 500 h Pa(V850, SH850, V500, and SH500) strongly affect all parts of the Beijing precipitation distribution during the wet season(April–September). Meridional wind, zonal wind, and specific humidity at only 850 h Pa(V850, U850, SH850) are significantly related to the precipitation distribution in the dry season(October–March). Impacts of these large-scale predictors on the daily precipitation amount with higher quantile become stronger, whereas their impact on light precipitation is negligible. In addition, SH850 has a strong relationship with wet-season extreme precipitation across the entire region, whereas the impacts of V850, V500, and SH500 are mainly in semi-arid and semi-humid areas. For the dry season, both SH850 and V850 are the major predictors of extreme precipitation in the entire region. Moreover, QR can satisfactorily simulate the daily precipitation amount at each station and for each season, if an optimum distribution family is selected. Therefore, QR is valuable for detecting the relationship between the large-scale predictors and the daily precipitation amount.  相似文献   

14.
2003年江淮流域强降水过程与30—70d天低频振荡的联系   总被引:9,自引:1,他引:8  
利用NCEP/NCAR再分析和地面观测站的逐日降水资料,研究了2003年夏季江淮流域强降水过程与低频振荡的联系。结果显示,主周期为30~70d的低频振荡对2003年江淮流域暴雨的形成具有重要贡献:低频涡旋在江淮地区降水期的对流层高、低层呈负、正配置,具有斜压结构,利于降水发生;850hPa上正涡度系统的传播具有明显的北传和西传特征;存在于西太平洋、西北太平洋及其以东地区的低频波列(P—J)的活动过程影响了我国2003年江淮低频强降水的形成;整层低频水汽通量显示来自副热带高压外围的西南季风对水汽输送的贡献较显著,且2003年江淮地区30-70d时间尺度上降水的水汽来源为南海而非孟加拉湾或西太平洋。  相似文献   

15.
利用1979—2013年ERA-interim再分析资料,通过均方差分析、功率谱分析、带通滤波及合成分析等统计方法系统地分析了东亚季风区冬季经向风的季节内变化及其可能机理。结果表明,东亚季风区冬季经向风异常在我国华南一带变化显著,振荡周期为10~20 d(准双周振荡)。在准双周尺度上,水平方向上,850 h Pa异常北风主要呈现从高纬向低纬传播的特点,60°N附近异常经向风向东南方向传播,副热带30°N附近弱的异常经向风向东传播,二者在华南汇合,随后分为两支中心,分别向南和向东继续传播,我国华南一带存在基本气流向准双周尺度波动的能量转换,因此异常经向风在华南会显著增强;垂直方向上,对流层上层、中层、下层的经向风呈现强—弱—强的异常中心特征,对流层下层850 h Pa和上层200~300 h Pa均存在经向风大值中心;我国东部上空300 h Pa上,副热带地区波动比850 h Pa更明显,60°N附近波动向东南方向移动,同样在我国东部地区合并,波动辐合导致波动能量增强。  相似文献   

16.
热带夏季风场与对流场季节内振荡传播模比较   总被引:1,自引:1,他引:0       下载免费PDF全文
利用1979-2007年卫星观测日平均OLR资料以及NCEP/DOE第2套再分析资料中的风场资料,采用有限区域波一频分析、合成分析等方法,分析对比对流层高、低层风场与对流场所表征的热带北半球夏季季节内振荡(BSISO)各种传播模态谱分布气候特征及其年际异常。结果表明:各要素反映的BSISO各种模态的气候特征及其年际变化存在一定差异,总体而言对流层低层风(850hPa纬向风或经向风)与对流比较一致。850hPa经向风(纬向风)所反映的纬向(经向)传播BSISO谱分布气候特征与对流情况最相似。在ENSO发展年,850hPa经向风反映的赤道东传波加强趋势与对流较为一致;850hPa纬向风、经向风反映的北传波变化趋势都与对流相似。在ENSO衰减年,850hPa纬向风(经向风)反映的赤道东传波(赤道外西传波)减弱趋势与对流较为一致;对流以及850hPa经向风、200hPa纬向风和200hPa经向风4种要素都能体现南海及周边地区北传波明显减弱这一特征。对流和850hPa纬向风所反映的北传波与印度洋偶极子模态之间关系一致。  相似文献   

17.
江淮地区强降水分型及其环流演变   总被引:5,自引:5,他引:0       下载免费PDF全文
使用新建的强降水历史个例数据集、1981-2016年我国逐日降水量观测资料、2016年T639与ECMWF模式1~10 d的逐日降水量预报,采用经验正交函数展开(EOF)提炼出江淮地区强降水的典型模态,并运用场相似法对江淮地区强降水进行客观分型,分析强降水的环流演变;定量诊断型环流相似所得与实测环流和降水的对应关系。结果表明:江淮地区强降水可分为Q,Q和Q 3种类型,其中,Q型降水中心位于江淮中部,Q型表现为降水北多南少,Q型表现为降水中间少南北多的分布。强降水对应的前期至当日,各型降水对应在亚洲的中高纬度地区均有显著的环流异常,且环流演变存在明显不同;但各类型降水对应的系统移动速度缓慢,且到强降水发生日江淮地区处于西太平洋副热带高压西北侧低值系统的控制,有利于该地区强降水的发生。按环流相似依不同时效得到的强降水发生日环流与实际环流存在很好的相关。独立试验中,该文方法对25 mm降水的TS评分在各时效均高于模式预报,50 mm降水的TS评分在3 d以上时效的评分也均高于模式预报。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号