首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对旱作农业来说,农作物所需的水分主要是通过土壤接纳的自然降水而获得的。除供当年农作物生长外,土壤中的剩余水分还可在供水季节起到调节和再分配作用。因此在评价一地的自然降水对农业生产作用时,必须研究土壤水分随降水的变化关系,以及土壤水分随季节、深度的动态特征。本文在  相似文献   

2.
从土壤-作物-大气连续体(SPAC)的水分循环出发,以冬小麦为例,通过对土壤水分动态和有关作物生长过程的模拟,建立作物水分消耗与干物质积累和产量形成关系的动力-统计模式。经3年试验资料的验证,总干重、籽粒产量和根层土壤水分含量的平均模拟误差分别为6.39%,5.60%和5.45%。发育期、叶面积动态和干物质积累动态的模拟与实测情况吻合得也较好。  相似文献   

3.
干旱胁迫对夏玉米叶片光合及叶绿素荧光的影响   总被引:4,自引:0,他引:4  
选用华北地区大面积种植的夏玉米品种郑单958、承玉2号、鲁单981作为试验材料,通过研究干旱胁迫条件下的玉米叶片光合、叶绿素荧光等指标随着土壤水分的动态变化规律,以期为夏玉米干旱的生理生态变化监测及水分高效利用提供理论依据。研究发现,在土壤含水量70%左右时,随着土壤相对湿度的下降,上述3个夏玉米品种仍能保持其叶片水分状态。郑单958、承玉2号、鲁单981的叶片净光合速率在土壤水分中等条件下最大,分别为39.9、38.8、38.4μmolCO2/m^2·s;在土壤相对湿度较低时,郑单958、承玉2号、鲁单981的叶片净光合速率下降趋势明显(P〈0.05)。叶片水势变化规律为:在土壤相对湿度〉90%时,对水分胁迫郑单958、承玉2号不敏感,鲁单981敏感;在土壤相对湿度〈70%时,水分胁迫条件下承玉2号不敏感,而鲁单981、郑单958敏感。气孔导度(g1)变化规律:随着水分胁迫加剧,3个夏玉米品种气孔导度均下降,在土壤水分较高时,气孔导度变化规律不明显,在土壤水分较低时,气孔导度明显下降(P〈0.01),细胞间隙CO2浓度(Ci)随土壤水分胁迫加剧而上升。上述结果表明:与叶片的光合和水分状况相比,夏玉米的气孔对土壤水分的匮缺更为敏感。  相似文献   

4.
基于土壤含水量模拟的贵州山区旱地农业干旱监测方法   总被引:1,自引:0,他引:1  
针对贵州山区季节性农业干旱,建立基于土壤水分收支的旱地农业干旱监测方法。该方法应用历史逐日平均气温、降水量、日照时数等资料,通过降水有效性订正实现对土壤水分收入的计算,通过构建水分消耗经验公式实现对水分支出的计算,通过对逐日水分收入量和支出量的定量计算,实现土壤含水量的动态模拟。基于土壤水分模拟结果,结合干旱临界指标和土壤凋萎湿度等参数,构建了旱地农业干旱指数,实现干旱等级监测。对比检验结果表明,基于该方法的土壤含水量模拟结果能够反映土壤水分动态变化,构建的旱地农业干旱指数能够反映农业干旱等级,对贵州历史干旱的反演结果与干旱实际发生特征相符。  相似文献   

5.
干旱胁迫对夏玉米叶片光合及叶绿素荧光的影响   总被引:10,自引:0,他引:10  
选用华北地区大面积种植的夏玉米品种郑单958、承玉2号、鲁单981作为试验材料,通过研究干旱胁迫条件下的玉米叶片光合、叶绿素荧光等指标随着土壤水分的动态变化规律,以期为夏玉米干旱的生理生态变化监测及水分高效利用提供理论依据.研究发现,在土壤含水量70%左右时,随着土壤相对湿度的下降,上述3个夏玉米品种仍能保持其叶片水分状态.郑单958、承玉2号、鲁单981的叶片净光合速率在土壤水分中等条件下最大,分别为39.9、38.8、38.4 μmol CO2/m2 · s;在土壤相对湿度较低时,郑单958、承玉2号、鲁单981的叶片净光合速率下降趋势明显(P<0.05).叶片水势变化规律为:在土壤相对湿度>90%时,对水分胁迫郑单958、承玉2号不敏感,鲁单981敏感;在土壤相对湿度<70%时,水分胁迫条件下承玉2号不敏感,而鲁单981、郑单958敏感.气孔导度(gs)变化规律:随着水分胁迫加剧,3个夏玉米品种气孔导度均下降,在土壤水分较高时,气孔导度变化规律不明显,在土壤水分较低时,气孔导度明显下降(P<0.01),细胞间隙CO2浓度(Ci)随土壤水分胁迫加剧而上升.上述结果表明:与叶片的光合和水分状况相比,夏玉米的气孔对土壤水分的匮缺更为敏感.  相似文献   

6.
1引言巴彦县是东北的重要产粮基地,农业气象尤其是土壤墒情指标规律的建立对农业生产具有积极作用。作物的水分供应主要来自土壤,土壤水分含量丰歉对作物的生长发育有直接的影响,当土壤水分降低到一定程度时作物就会出现旱象。换言之,农业干旱的关键在于土壤水分的亏缺状况目前一般认为当土壤相对含水量〈40%时,作物受旱严重:当土壤相对含水量为40—60%时,作物受旱呈现中度:当土壤相对含水量为60—70%时,作物呈现轻微旱象;当土壤  相似文献   

7.
甘肃河东雨养农业区土壤水分变化规律的研究   总被引:10,自引:0,他引:10       下载免费PDF全文
利用甘肃雨养农业区11个站点的土壤湿度资料及其相关的气象资料分析了该区域土壤水分时空变化规律、降雨量的补给和作物土壤水分状况.该区域土壤含水量自东南向西北减小, 变异系数增大.土壤水分不足区水分变化主要集中在90 cm以上, 而土壤水分严重不足区、作物生育关键期土壤水分不足区和土壤水分充足区水分变化深度可达180 cm左右.雨季降雨量对土壤水分补给率的地域变化范围为15.3%~41.7%; 补给率除受降雨量的影响外, 土壤类型也是一个重要的制约因子.除成县、临夏和西峰外, 其余各站在小麦生育期水分亏缺量均超过100 mm, 占需水量的30%~50%.  相似文献   

8.
日本九州地区旱田作物约有22万公顷,是该地区的主要作物。旱田作物的生长与土壤水分有很大关系,迅速准确地把握土壤水分状况对于确定灌溉时间及灌水量等是非常必要的。测定土壤水分,有普通的烘干法,张力计法,热传导系数法,电阻法,中子射线法等,但是,这些方法都是在接触和破坏土壤的情况下估计土壤水分的方法,因此,需要开发出一种用非接触和非破坏性的估计土壤水分的测量技术。研究表明,土壤的分光反射特性与土壤的组成及土壤的水分状态有明显的关系。近年来,又利用人造卫星和飞机观测的可见光、近红外资料作过估计表层土壤水分的试  相似文献   

9.
沙漠中水分条件是决定生态分异的关键因素,地表凝结水的产生对沙漠植物与结皮生物的水分补充有重要的作用。利用微渗计对古尔班通古特沙漠土壤表层凝结水形成特征及影响因素进行分析。研究表明沙漠土壤凝结水形成总量随着表层土壤生物演替从流沙、藻类、地衣和苔藓依次增加。分析影响凝结水形成的因素表明土壤中细粒物质以及地衣和苔藓生物相对土壤粗粒物质更有利于凝结水形成。在土壤结皮演替过程中土壤中的细粒颗粒含量增加的同时生物有机体含量也在增加,因而随着表层土壤生物演替凝结水形成量呈增加趋势。凝结水形成量与日均相对湿度、土壤湿度呈显著正相关,而与日均风速、日均温度、土壤温度呈负相关。研究说明在干旱的沙漠地带土壤凝结水是除降水以外补充表层土壤水分重要的水分来源。  相似文献   

10.
一、预报对象延安市冬小麦一般于三月中、下旬返青,耕作层土壤亦于此期解冻,而春耕春播则同时于三月下旬至四月间进行。为此,结合农业生产,我们对开春至春播、秋作物出苗期间即三月下旬~五月上旬50Cm层土壤中水分含量逐旬进行预报。二、预报思路土壤中水分的含量,受降水和蒸发散失的影响而变化,而蒸发散失量的大小首先是温度的函数,因此,在我区早春气温较低、降水将少的情况下,土壤中的水分含量则基本取决于前期的土壤水分储存量,也就是说,上一旬的土壤水分量,是本旬土壤含水  相似文献   

11.
本文利用一个简单水分平衡模式得出了土壤水分状况的特征时间尺度,该时间尺度被定义为农业干旱发生的时间尺度。假定无降水,模式要求输入初始土壤含水量以及可能蒸发量估计值。文中讨论了全球尺度的两个应用个例。在第一个个例中,考虑开始时土壤处于饱和,来得出一个气候模式实际地适应土壤水分分布的初始误差所需要的时间。在第二个个例中,用了气候值作为初始条件来得出水分循环对大气强迫的敏感性的度量。  相似文献   

12.
本文基于2017年在干旱条件下,对扎龙湿地及其边缘区域三类典型土壤含水量及各层土壤的剖面形态及水分物理特征进行观测基础上,建立湿地土壤水分盈亏状况的客观评价方法,分析研究扎龙湿地非饱和下垫面水分盈亏状况,揭示湿地土壤水分的垂直变化特征,结果表明:土壤呈亏缺状况将导致植被类型的变化,是形成湿地景观破碎化的诱因之一,草甸沼泽土在水量得不到及时补充造成的情况下,亏缺量表现比较明显,一旦腐殖质层遭到破坏,其功能恢复将会非常困难。  相似文献   

13.
对土壤水分指标的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
董振国 《气象》1985,11(1):32-33
在研究土壤水分时,人们经常使用土壤饱和含水量、田间持水量、凋萎系数、土壤有效水最大存贮量等来表征土壤水分性状。土壤有效水固然是植物根系能吸收的水分,但是当植物蒸腾强烈时,植物对接近凋萎系数的土壤水的吸收速率,远远不能满足叶片蒸腾的需要,植物仍然受到干旱的威胁,因此有必要寻找能表征与作物生长联系得更密切的土壤水分指标。农田实际蒸散量与最大蒸散量之比能反映作物需水与土壤供水的关系,作物层温度与气温差则反映了植物蒸腾强度的变化。晴天白昼,蒸腾是维持叶温较低的重要原因。土壤供水不足,蒸腾速率  相似文献   

14.
盛绍学 《气象》1987,13(8):54-54
在自然条件下,土壤水分主要受环境条件制约。为探索作物耕作层(0—30cm土层)内土壤有效水分含量的变化与气象条件的关系,对土壤有效含水量与气温、降水量、日照以及空气湿度等的关系进行初步分析。 1.土壤有效含水量与气温及降水的关系 自然条件下降水是土壤水分的最主要的来源,  相似文献   

15.
绿洲周边荒漠戈壁夏末土壤-大气水分传输特征   总被引:10,自引:0,他引:10  
利用“我国西北干旱区陆-气相互作用试验”2000年8-9月在甘肃敦煌地区戈壁滩上取得的野外观测资料,分析了临近绿洲的戈壁土壤湿度和温度特征以及相对应的大气湿度特征,发现土壤热量活动层约为5cm厚,比一般土壤要薄得多;临近绿洲的荒漠戈壁上,不仅近地层大气多为逆湿,而且浅层土壤有时也出现逆湿。土壤湿度日变化能清楚地被区分为湿维持、水分损失、干维持和水分补充等四个阶段。土壤湿度廓线表明:土壤水分活动层厚度约为10m;湿维持阶段的浅层土壤逆湿是土壤湿度廓线最主要的结构特征,这一土壤湿度结构预示着夜间土壤可能通过凝结吸收大气水分,它与白天的土壤水分蒸发共同构成土壤对大气水分的“呼吸”过程。土壤逆湿的形成与土壤温度状态、大气逆湿强度和大气稳定度都有关。  相似文献   

16.
渍水麦田土壤水分动态模型研究   总被引:13,自引:1,他引:13       下载免费PDF全文
根据土壤水分平衡原理,建立了一个反映土壤渍水、可与小麦生长模型耦合的土壤水分动态模型,尤其考虑了因地下水位较浅而引起的毛管上升水量和土壤导水率的变化对土壤含水量的影响。采用盆栽小麦水分试验资料验证了日蒸散量的模拟值,利用湖北荆州农业气象试验站和江苏金坛农业气象试验站的土壤水分历史资料对建立的模型进行了综合测试和验证,结果表明:蒸散量、地下水位和0~50 cm土壤含水量的模拟值与实测值具有较好的一致性,模型能可靠地预测多雨和渍水地区麦田土壤水分的变化动态  相似文献   

17.
基于黄河沿岸陕西和河南境内的33个农业气象站从1992-2005年的实测土壤水分资料,计算了各站表层10、20和50cm各土层的多年平均植被可利用土壤水分储量,发现土壤水分储量存在明显的空间变异性。多年平均土壤水分储量呈现西北(陕北)低以及南、东南和东部(陕南和河南)高的变化态势。其中,在陕西绥德站出现水分的最低值,与黄土高原属于水分贫瘠区相对应。在河南信阳站出现水分最高值,与河南南部和陕南水分比较充沛相对应。土壤水分储量垂向分异不明显,各土层的土壤水分储量之间存在较好的相关性。通过简单线性相关分析发现,土壤水分储量与田间持水量呈现较强的正相关,与纬度呈较强的负相关。而与土壤容重、地理位置、气象要素等其他因子相关关系不显著。灌溉与土壤水分储量的相关系数比降水与土壤水分储量的相关系数大,说明该区灌溉是土壤水分的重要调节因子。通过主成分分析发现,对大多数站点而言,土壤水分变化受下垫面、气候和灌溉等的综合影响,其影响程度存在明显的空间分异性。  相似文献   

18.
内蒙古雨养农业区土壤水分动态监测模式   总被引:3,自引:0,他引:3  
文章根据多年实际观测资料,在土壤水分平衡参数模拟方法的基础上,利用初始土壤有效水分贮存量、降水量和实际蒸散量3要素,建立了0~50 cm土层的土壤水分动态监测模式,确定了各项参数的计算方法。通过11个站点两年的检验和试用,对主要农作物春小麦和春玉米农田的水分状况监测准确率达80%以上。同时,对两个站点的土壤水分进行了预报,准确率平均为92%。  相似文献   

19.
黄土高原芨芨草土壤水分特征及水分利用效率研究   总被引:3,自引:0,他引:3  
通过对芨芨草草地土壤水分状况及芨芨草水分利用情况进行初步分析,结果表明:芨芨草地土壤贮水量呈明显的季节变化;土壤剖面可依含水量变化分为3层,即速变层、活跃层和稳定层。芨芨草群体水分利用效率以6月份为最高,而单叶水分利用效率7月份最高,具有较强的抗旱性。  相似文献   

20.
半干旱区陆面模式参数对水分循环的敏感性研究   总被引:2,自引:0,他引:2  
植被覆盖对陆气之间物质和能量交换过程具有极其重要的影响,但植被覆盖对于交换过程的影响因子很多,关系复杂.作者研究了各种植被因子对陆气之间水分循环的作用和相对重要性.首先通过单点NO-AH模式对吉林通榆农田下垫面2004年土壤和边界层各物理量进行模拟,并与观测结果比较和评价,肯定了单点NOAH模式模拟能力.使用这一模式进行敏感试验,将与植被有关的参数分别在其取值范围取较大与较小值,比较水分循环各物理量如土壤湿度、土壤蒸发、植被蒸腾等的变化情况.试验表明在各参数中植被气孔阻抗、根系深度、土壤湿度初值和反照率对水分循环的影响较大,而叶面积指数、粗糙度和冠层阻抗则影响较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号