首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
倪允琪  周秀骥 《气象学报》2004,62(5):647-662
国家重点基础研究发展规划项目“我国重大天气灾害形成机理与预测理论研究”经过项目全体科学家的 5a研究 ,取得了一系列重要的研究成果 :(1)提出了基于多种实时观测资料的梅雨锋暴雨的多尺度物理模型 ;(2 )建立了梅雨锋暴雨的天气学模型 ;(3)梅雨锋是由多个不同尺度系统构成的梅雨锋系 ,它具有介于温带锋系结构与热带辐合带结构之间的副热带锋系结构 ,在长江中下游有时可表现为双锋结构。锋前的湿物理过程与锋上强对流系统发展形成的正反馈过程以及梅雨锋系的不同尺度系统的相互作用是梅雨锋维持与发展的重要机制 ;(4 )提出了多种中尺度暴雨的定量卫星遥感反演理论和方法 ,并形成一系列新的反演产品 ;(5 )成功地研究了双多普勒雷达同步探测和反演中尺度暴雨三维结构的理论和方法 ;(6 )发展了配有三维变分同化系统的中尺度暴雨数值预报模式系统 ,在 2 0 0 3年淮河抗洪救灾中发挥了积极作用。上述研究成果表明该项目已经圆满地完成了预定的目标与任务。  相似文献   

2.
我国长江中下游梅雨锋暴雨研究的进展   总被引:12,自引:8,他引:12       下载免费PDF全文
倪允琪  周秀骥 《气象》2005,31(1):9-12
我国长江中下游梅雨锋暴雨研究在最近五年中取得了明显的进展,其中有:第一,提出了基于多种实时观测资料的梅雨锋暴雨的多尺度物理模型;第二,建立了梅雨锋暴雨的天气学模型;第三,提出了梅雨锋的详实结构及其维持机理;第四,提出了多种中尺度暴雨的定量卫星遥感反演理论和方法,并形成一系列新的反演产品;第五,成功地研究了双多普勒雷达同步探测和反演中尺度暴雨三维结构的理论和方法;第六,发展了配有三维变分同化系统的中尺度暴雨数值预报模式系统,在2003年淮河抗洪救灾中发挥了积极作用。  相似文献   

3.
梅雨锋暴雨中尺度对流系统研究若干进展   总被引:5,自引:1,他引:4  
孙晶 《气象科技》2011,39(3):257-265
梅雨锋暴雨中尺度对流系统是暴雨的直接影响系统,对其结构特征、活动规律及其发生发展的物理机制的深入研究,对提高梅雨锋暴雨的预报能力有重大意义。近年来对梅雨锋暴雨中尺度对流系统的研究取得了很大进展,文章对梅雨锋暴雨中尺度对流系统研究的若干进展作了简要综述,包括梅雨锋暴雨云系多尺度结构、梅雨锋暴雨的β和γ中尺度系统发生发展的环境条件和结构、云微物理分布和转化特征及其对热力动力过程反馈等方面,并对有关问题进行讨论。  相似文献   

4.
In this study, evolution of the mesoscale convective systems (MCSs) within a Meiyu front during a particularly heavy rainfall event on 22 June 1999 in East China was simulated by using a nonhydrostatic numerical model ARPS (Advanced Regional Prediction System). Investigations were conducted with emphasis on the impact of the interaction among multi-scale weather systems (MWSs) on the development of MCSs in the Meiyu frontal environment. For this case, the development of MCSs experienced three different stages. (1) The convections associated with MCSs were firstly triggered by the eastward-moving Southwest Vortex (SWV) from the Sichuan Basin, accompanying the intensification of the upper-level jet (ULJ) and the low-level jet (LLJ) that were approaching the Meiyu front. (2) Next, a low-level shear line (LSL) formed, which strengthened and organized the MCSs after the SWV decayed. Meanwhile, the ULJ and LLJ enhanced and produced favorable conditions for the MCSs development. (3) Finally, as the MCSs got intensified, a mesoscale convective vortex (MCV), a mesoscale LLJ and a mesoscale ULJ were established. Then a coupled-development of MWSs was achieved through the vertical frontal circulations, which further enhanced the MCV and resulted in the heavy rainfall. This is a new physical mechanism for the formation of Meiyu heavy rainfall related to the SWV during the warm season in East China. In the three stages of the heavy rainfall, the vertical frontal circulations exhibited distinguished structures and played a dynamic role, and they enhanced the interaction among the MWSs. A further examination on the formation and evolution of the MCV showed that the MCV was mainly caused by the latent heat release of the MCSs, and the positive feedback between the MCSs and MCV was a key characteristic of the scale interaction in this case.  相似文献   

5.
一次梅雨锋暴雨的中尺度对流系统及低层风场影响分析   总被引:2,自引:1,他引:1  
杨舒楠  路屹雄  于超 《气象》2017,43(1):21-33
本文利用常规气象观测资料,地面自动站加密观测资料和FY-2D、FY-2E卫星云图以及NCEP 1°×1°的FNL分析资料、EC 0.25°×0.25°的细网格模式数据等,对2015年6月15—18日梅雨锋暴雨过程的中尺度对流系统(MCS)活动特征、对流层低层风场对MCS发展的影响以及梅雨锋暴雨的垂直环流特征等进行了研究,结果表明:天气尺度梅雨锋上叠加的MCS的产生及向下游移动,以及其在安徽中部到江苏南部正涡度带作用下的发展增强,造成了江苏南部的局地强降水。强降水与中尺度低空急流核的位置吻合较好。在垂直方向上,高空急流入口区右侧与低空急流核左前方叠加,高低空急流耦合作用明显。在降水过程中,对流层低层具有较强的垂直风切变,有利于垂直涡度的增强和MCS的发展。对流层低层的垂直风切变也有利于不同源地的水汽在梅雨锋区汇集。梅雨锋北侧的干冷空气在对流层低(中)层以东北(西北)路径向锋区移动。南侧的暖湿气流沿西南路径移动、抬升,接近锋区后质点在上升过程中逐渐转向东移,在高空急流的抽吸作用下,快速向东流出,近地面层空气存在跨锋面环流。梅雨锋系统垂直方向上的次级环流是高层风场强烈辐散以及空气运动过程中质量补充和循环的结果。  相似文献   

6.
我国南方暴雨的试验与研究   总被引:28,自引:4,他引:28       下载免费PDF全文
50年以来, 中国气象科学研究院几代科学家致力于暴雨研究, 取得了令人瞩目的成就, 尤其是最近10年, 中国气象科学研究院主持了3个国家级研究项目开展我国南方暴雨研究, 其中包括华南前汛期暴雨的试验与研究, 长江中下游梅雨锋暴雨的试验与研究以及目前正在实施的研究范围更为广泛的我国南方致洪暴雨的试验与研究。通过上述项目的实施, 在华南前汛期暴雨与长江流域梅雨锋暴雨的三维结构、形成机理、遥感监测与探测中尺度暴雨的理论和方法以及自主发展配有三维同化系统的中尺度暴雨数值模式系统等方面均取得重要的研究成果, 有的已经在我国各级业务部门推广应用, 取得良好的经济与社会效益。目前正在实施的国家973项目, 针对引发我国南方致洪暴雨的β-中尺度强对流天气系统开展更为深入的试验与研究, 通过这些努力, 有望在提高我国暴雨的监测与预报、预警能力, 增强我国减灾防灾的总体实力做出更为重要的贡献。  相似文献   

7.
梅雨期青藏高原东移对流系统影响江淮流域降水的研究   总被引:5,自引:2,他引:3  
利用GOES-9和FY-2C卫星TBB资料、1°×1°的NCEP再分析资料以及常规地面观测资料对2003和2007年梅雨期内青藏高原东移对流系统影响重庆、四川以及江淮梅雨锋地区降水的主要方式作了研究。结果表明,2003和2007年梅雨期内,青藏高原东移对流系统影响下游地区降水主要存在4种方式:(1)高原上的动力辐合中心伴随高原对流系统东移,影响所经地区的降水,该种影响方式较为常见,持续时间较长,影响范围较广。(2)高原对流系统移出高原后在四川盆地引发稳定少动的西南低涡,触发一系列暴雨过程,此种影响方式持续时间较长,主要影响地区为四川和重庆(往往会造成强度很大的暴雨),当西南低涡以东盛行较强西南风时,向梅雨锋的动能输送较强,这十分有利于梅雨锋地区对流活动和降水的加强。(3)高原东移对流系统在四川盆地触发西南低涡,西南低涡生成后,在引导槽的作用下沿梅雨锋东移,沿途引发一系列暴雨,此种影响方式持续时间最长,波及范围最广。(4)对流系统东移出青藏高原后直接影响下游地区,此种影响方式最为常见,但其影响时间最短,强度最小。对环境场的分析表明,高原强对流往往发生在500hPa影响槽槽区附近的上升运动区,当200hPa高空急...  相似文献   

8.
    
During the Meiyu period in June and July of 1998, intensified field observations have been carried out for the project “Huaihe River Basin Energy and Water Cycle Experiment (HUBEX)”. For studying Meiyu front and its precipitation in Huaihe River basin, the present paper has performed analysis on the middle and lower level wind fields in the troposphere by using the radar data obtained from the two Doppler radars located at Fengtai district and Shouxian County. From June 29 to July 3 in 1998, the continuous heavy precipitation occurred in Huaihe River basin around Meiyu front. The precipitation process on July 2 occurred within the observation range of the two Doppler radar in Fengtai district and Shouxian County. The maximum rainfall of the Meiyu front was over 100 mm in 24 h, so it can be regarded as a typical mesoscale heavy precipitation process related to Meiyu front. Based on the wind field retrieved from the dual Doppler radar, we find that there are meso-γ scale vertical circulations in the vertical cross-section perpendicular to Meiyu front, the strong upward motion of which corresponds to the position of the heavy rainfall area. Furthermore, other results obtained by this study are identical with the results by analyzing the conventional synoptic data years ago. For example: in the vicinity of 3 km level height ahead of Meiyu front there exists a southwest low-level jet; the rainstorm caused by Meiyu front mainly occurs at the left side of the southwest low-level jet; and the Meiyu front causes the intensification of the low-level convergence in front of it. This research was supported by Project HUBEX (Project Number: 49794030) which is funded by the National Natural Science Foundation of China (NSFC).  相似文献   

9.
The merger of convective clouds in severe precipitation associated with the Meiyu front occurred near Nanjing during 4–5 July 2003 is investigated using satellite observational analyses and numerical simulations with the Weather Research and Forecast version 3.2. It is found that the merger of convective clouds plays a crucial role in the excessive storm. The severe rainfall event experiences a multi-scale organized process ranging from triggered convective bulbs, growing convective cells, to the formation of the convective complex. The development of convections causes the large-scale dynamic and thermodynamic environment change, which in turn favors the organized processes of convective systems and promotes multi-scale coupling of the nonlinear interaction between convections and its large-scale environment.  相似文献   

10.
A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° latitude and longitude NCEP reanalysis data and the ground surface rainfall, using the potential vorticity (PV) analysis and PV inversion method, the evolution of main synoptic systems, and the corresponding PV and PV perturbation (or PV anomalies) and their relationship with heavy rainfall along the Meiyu front are analyzed in order to investigate the physical mechanism of the formation, development, and maintenance of the Meiyu front. Furthermore, the PV perturbations related to different physics are separated to investigate their different roles in the formation and development of the Meiyu front. The results show: the formation and persistence of the Meiyu front in a quasi-WE orientation are mainly due to the maintenance of the high-pressure systems in its south/north sides (the West Pacific subtropical high/ the high pressure band extending from the Korean Peninsula to east of North China). The Meiyu front is closely associated with the PV in the lower troposphere. The location of the positive PV perturbation on the Meiyu front matches well with the main heavy rainfall area along the Meiyu front. The PV inversion reveals that the balanced winds satisfying the nonlinear balanced assumption represent to a large extent the real atmospheric flow and its evolution basically reflects the variation of stream flow associated with the Meiyu front. The unbalanced flow forms the convergence band of the Meiyu front and it mainly comes from the high-pressure system in the north side of the Meiyu front. The positive PV perturbation related to latent heat release in the middle-lower troposphere is one of the main factors influencing the formation and development of the Meiyu front. The positive vorticity band from the total balanced winds is in accordance with the Meiyu front band and the magnitude of the posit  相似文献   

11.
施曙  赵思雄 《大气科学》1994,18(4):476-484
本文对1986年6月22日出现于长江中游的一次中低压过程进行了诊断分析。这个中低压水平尺度约500km,生命史为一天,但是形成了日降水量263mm的特大暴雨。分析揭示,梅雨锋是一条近于东西走向的正涡度带状分布区。而这一带状区中存在强烈的中尺度水汽通量辐合中心和深厚的上升运动区,有利于中尺度低压的形成。#FKM#FS和θ的剖面表明,条件对称不稳定(CSI)可能是这次梅雨锋暴雨的一种触发机制。此外,由拉格朗日方法对气块三维轨迹的计算表明,来自高低空和不同方向的两支大尺度气流的结合使高空辐散加强,可能对中低压的  相似文献   

12.
华南锋面与暖区暴雨个例对比分析   总被引:14,自引:1,他引:13  
分析了1961~1999年亚洲热带近海海温与云南降水的关系.通过研究云南夏季降水对近海海温异常的响应,发现云南初夏的降水与亚洲热带近海海温有明显的负相关关系,这种降水减少海温正距平的情况在北印度洋西部和阿拉伯海表现比孟加拉湾和南海更显著,但是在盛夏相关关系不显著.同时发现云南西南部的夏季降水与前期盂加拉湾海温有显著的正相关,而与其它海域的海温相关不显著.滇东南的夏季降水只与前期南海的海温有显著的正相关.  相似文献   

13.
应用湿Q矢量诊断梅雨锋暴雨   总被引:7,自引:1,他引:7  
利用湿Q矢量,结合改进的MM4(MMM4)模式模拟输的加密资料,细致地诊断分析了1991-07-05T20-06T20一次典型的江淮梅雨锋暴雨过程,结果表明:湿Q矢量散度辐合场随高度向倾斜;在梅雨锋暴雨发展,衰亡阶段,湿Q矢量散度散,合场在垂直方向上主要呈现出了相间分布的特点;从湿Q矢量散度辐合场这个角度探讨了梅雨锋暴雨的内在机理,并给出了梅雨锋暴雨具体预后的新思路。  相似文献   

14.
利用常规气象观测资料、NCEP 1°×1°的FNL再分析资料和FY-2E卫星云图资料对2017年梅汛期前后浙江中部大尺度环流背景进行分析,同时对梅汛期三次强降水过程的梅雨锋结构、对流层低层风场对中尺度对流系统发展的影响以及中尺度云团特征等进行了诊断分析。结果表明:1) 进入梅汛期,贝加尔湖长波脊发展及长久维持,带状分布的西太平洋副热带高压较常年偏强,有利于冷暖空气交汇于浙江一带,形成范围大、持续时间长的强降水;2) 在垂直方向上,高空西风急流的入口区右侧与低空急流核左前方相叠加,高低空急流耦合作用明显,为中尺度对流系统维持提供了必备的不稳定机制;3) 三次强降水过程均具有正涡度带随时间东移的现象,揭示了梅雨锋区低值系统沿切变线东移的特点。其中,第三次暴雨过程正涡度东移特点最明显,对流层低层的有利动力条件导致中尺度对流系统的发展及强降水的出现;第二次过程的副热带西风急流中心风速明显较第一次和第三次小,但西风急流中心位置南移至30°—35°N,正好位于梅雨锋区上空,补偿了因急流风速减小对高层辐散的影响。  相似文献   

15.
持续性梅雨锋暴雨的环流特征分析   总被引:14,自引:2,他引:12  
重点分析了1999年梅雨季长江中下游地区暴雨集中期大尺度环流特征和主要影响天气系统.认为该期间发生的持续性暴雨是在一种特定的大尺度环流背景下发生的.主要表现为:(1)副高活动有明显的阶段性西进、滞留、东撤,这一特征与中高纬度天气系统的活动密切相关,副高活动直接影响低空急流的水汽输送路径及降水强度;(2)华北高压坝的建立有利于切变线北侧维持偏东风气流,对锋区的稳定起重要作用;(3)高原南侧生成的低涡在沿切变线东移过程中逐渐加强,使梅雨锋中的对流活动加剧,降水加强.  相似文献   

16.
梅雨锋暴雨的不平衡场   总被引:1,自引:1,他引:1  
中尺度散度及其变化和梅雨锋暴雨有较好的对应关系。在散度方程中,散度的局地变化项与垂直速度(ω)、散度(D)有关的项的量级在强降水区比在弱降水区要大。用中尺度资料计算的不平衡场(U)和不均匀场(A)和强降水区基本一致。因此,计算不平衡场和不均匀场及散度变化可以为暴雨等中尺度天气现象的短时预报提供线索。  相似文献   

17.
长江中下游一次非典型梅雨锋中尺度暴雨过程的分析研究   总被引:6,自引:0,他引:6  
黄永明  倪允琪 《气象学报》2005,63(1):100-114
利用T10 6物理分析资料、地面与高空加密观测资料和TBB资料对 2 0 0 1年汛期一次非典型的梅雨锋中尺度暴雨过程进行天气学和动力学诊断分析 ,并与 1998年典型的梅雨锋中尺度暴雨过程作一些比较。首先分析了该次暴雨过程的大尺度背景场 ,发现与 1998年典型的梅雨锋形势不同的是 ,5 0 0hPa环流形势表现为贝加尔湖地区是阻塞高压 (阻高 ) ,南海季风涌形式不明显 ,南亚高压位置偏东南 ,高空辐散气流较弱。接着对该暴雨系统的结构进行诊断分析 ,揭示了该非典型梅雨锋中尺度暴雨系统的三维结构 ,包括各物理量如涡度、散度、假相当位温、水汽的通量以及湿位涡等的结构特征。分析表明 ,总体来说 ,该次暴雨过程的强度要比 1998年典型的梅雨锋暴雨要弱 ,相应的各物理量的三维结构与 1998年典型的梅雨锋中尺度暴雨系统的三维结构相比有明显差异。  相似文献   

18.
A heavy rainfall in the Meiyu front during 4--5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3--6) with different explicit cloud microphysical parameterization schemes. The characteristics of microphysical process of convective cloud are studied by the model outputs. The simulation study reveals that: (1) The mesoscale model MM5 with explicit cloud microphysical process is capable of simulating the instant heavy rainfall in the Meiyu front, the rainfall simulation could be improved significantly as the model resolution is increased, and the Goddard scheme is better than the Reisner or Schultz scheme. (2) The convective cloud in the Meiyu front has a comprehensive structure composed of solid, liquid and vapor phases of water, the mass density of water vapor is the largest one in the cloud; the next one is graupel, while those of ice, snow, rain water and the cloud water are almost same. The height at which mass density peaks for different hydrometeors is almost unchangeable during the heavy rainfall period. The mass density variation of rain water, ice, and graupel are consistent with that of ground precipitation, while that of water vapor in the low levels is 1--2 h earlier than the precipitation. (3) The main contribution to the water vapor budget in the atmosphere is the convergence of vapor flux through advection and convection, which provides the main vapor source of the rainfall. Besides the basic process of the auto-conversion of cloud water to rain water, there is an additional cloud microphysical process that is essential to the formation of instant heavy rainfall, the ice-phase crystals are transformed into graupels first and then the increased graupels mix with cloud water and accelerates the conversion of cloud water to rain water. The positive feedback mechanism between latent heat release and convection is the main cause to maintain and develop the heavy precipitation.  相似文献   

19.
江淮梅雨季节强降雨过程特征分析   总被引:6,自引:2,他引:4  
为了便于识别梅雨季节江淮地区的强降雨过程,促进汛期强降雨过程的预报方法研究,使用中国国家级地面气象站逐日观测资料,提出了一种划分江淮梅雨季节强降雨过程的客观方法,并对江淮梅雨季节内强降雨过程的特征进行了分析。结果表明:该方法能有效划分出江淮梅雨季节的强降雨过程,划分结果与预报业务中的划分结果具有较高的一致性,便于在业务中应用。在江淮梅雨季节内,梅雨期的强降雨过程存在明显的年际变化且与梅雨强、弱密切相关,强梅雨年具有较多的强降雨过程以及过程累积强降雨日,强梅雨年的强降雨过程具有持续性、反复性和频发性的特征。弱梅雨年则相反。近56年来梅雨期强降雨过程累积雨量在整个江淮地区有线性增加的趋势,且江苏南部至浙江北部地区雨量增大的趋势最为显著。梅雨期强降雨过程累积雨量及雨日的空间分布是一致的,最大区域中心均位于安徽西南部、江西东北部及湖北东部等地。按照此客观划分方法确定的梅雨期的强降雨过程累积雨量与梅雨期总雨量具有较为相似的时空变化特征。   相似文献   

20.
梅雨锋两类中尺度低压(扰动)及其暴雨的数值研究   总被引:11,自引:6,他引:5  
对1999年6月梅雨锋频发型中尺度低压(扰动)及其暴雨代表个例,利用区域中尺度数值模式MM5进行了数值研究.基准试验成功复制出中尺度低压(扰动)和暴雨的发生发展过程,系统和降水的演变与强度结果比较合理.借助于高时空分辨率的模式输出,在一定程度上可以揭示中尺度低压(扰动)发生发展较详细的演变过程,同时也可描述出发展演变中某些更加细微的特征和反映对流层高低空气流的特征以及它们之间的相互作用.在基准试验基础上设计的一组数值试验,探讨了同中尺度低压(扰动)暴雨相关的物理过程,包括降水的显、隐式参数化方案,凝结潜热释放,行星边界层过程,局地地形对中尺度低压(扰动)及其所伴暴雨发生发展的影响.这些结果能在更加深入理解梅雨锋上两类中尺度低压(扰动)及其暴雨过程的具体物理图象方面提供一些有益的帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号