首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

2.
A set of 12 state-of-the-art coupled ocean-atmosphere general circulation models (OAGCMs) is explored to assess their ability to simulate the main teleconnections between the West African monsoon (WAM) and the tropical sea surface temperatures (SSTs) at the interannual to multi-decadal time scales. Such teleconnections are indeed responsible for the main modes of precipitation variability observed over West Africa and represent an interesting benchmark for the models that have contributed to the fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC4). The evaluation is based on a maximum covariance analysis (MCA) applied on tropical SSTs and WAM rainfall. To distinguish between interannual and multi-decadal variability, all datasets are partitioned into low-frequency (LF) and high-frequency (HF) components prior to analysis. First applied to HF observations, the MCA reveals two major teleconnections. The first mode highlights the strong influence of the El Niño Southern Oscillation (ENSO). The second mode reveals a relationship between the SST in the Gulf of Guinea and the northward migration of the monsoon rainbelt over the West African continent. When applied to HF outputs of the twentieth century IPCC4 simulations, the MCA provides heterogeneous results. Most simulations show a single dominant Pacific teleconnection, which is, however, of the wrong sign for half of the models. Only one model shows a significant second mode, emphasizing the OAGCMs’ difficulty in simulating the response of the African rainbelt to Atlantic SST anomalies that are not synchronous with Pacific anomalies. The LF modulation of these HF teleconnections is then explored through running correlations between expansion coefficients (ECs) for SSTs and precipitation. The observed time series indicate that both Pacific and Atlantic teleconnections get stronger during the twentieth century. The IPCC4 simulations of the twentieth and twenty-first centuries do not show any significant change in the pattern of the teleconnections, but the dominant ENSO teleconnection also exhibits a significant strengthening, thereby suggesting that the observed trend could be partly a response to the anthropogenic forcing. Finally, the MCA is also applied to the LF data. The first observed mode reveals a well-known inter-hemispheric SST pattern that is strongly related to the multi-decadal variability of the WAM rainfall dominated by the severe drying trend from the 1950s to the 1980s. Whereas recent studies suggest that this drying could be partly caused by anthropogenic forcings, only 5 among the 12 IPCC4 models capture some features of this LF coupled mode. This result suggests the need for a more detailed validation of the WAM variability, including a dynamical interpretation of the SST–rainfall relationships.  相似文献   

3.
Besides sea surface temperature (SST), soil moisture (SM) exhibits a significant memory and is likely to contribute to atmospheric predictability at the seasonal timescale. In this respect, West Africa was recently highlighted as a “hot spot” where the land–atmosphere coupling could play an important role, through the recycling of precipitation and the modulation of the meridional gradient of moist static energy. Particularly intriguing is the observed relationship between summer monsoon rainfall over Sahel and the previous second rainy season over the Guinean Coast, suggesting the possibility of a soil moisture memory beyond the seasonal timescale. The present study is aimed at revisiting this question through a detailed analysis of the instrumental record and a set of numerical sensitivity experiments. Three ensembles of global atmospheric simulations have been designed to assess the relative influence of SST and SM boundary conditions on the West African monsoon predictability over the 1986–1995 period. On the one hand, the results indicate that SM contributes to rainfall predictability at the end and just after the rainy season over the Sahel, through a positive soil-precipitation feedback that is consistent with the “hot spot” hypothesis. On the other hand, SM memory decreases very rapidly during the dry season and does not contribute to the predictability of the all-summer monsoon rainfall. Though possibly model dependent, this conclusion is reinforced by the statistical analysis of the summer monsoon rainfall variability over the Sahel and its link with tropical SSTs. Our results indeed suggest that the apparent relationship with the previous second rainy season over the Guinean Coast is mainly an artefact of rainfall teleconnections with tropical modes of SST variability both at interannual and multi-decadal timescales.  相似文献   

4.
Coupled Model Inter-comparison Project Phase 5 (CMIP5) model outputs of the South and East Asian summer monsoon variability and their tele-connections are investigated using historical simulations (1861-2005) and future projections under the RCP4.5 scenario (2006-2100). Detailed analyses are performed using nine models having better representation of the recent monsoon teleconnections for the interactive Asian monsoon sub-systems. However, these models underestimate rainfall mainly over South Asia and Korea-Japan sector, the regions of heavy rainfall, along with a bias in location of rainfall maxima. Indeed, the simulation biases, underestimations of monsoon variability and teleconnections suggest further improvements for better representation of Asian monsoon in the climate models. Interestingly, the performance of Australian Community Climate and Earth System Simulator version 1.0 (ACCESS1.0) in simulating the annual cycle, spatial pattern of rainfall and multi-decadal variations of summer monsoon rainfall over South and East Asia appears to more realistic. In spite of large spread among the CMIP5 models, historical simulations as well as future projections of summer monsoon rainfall indicate multi-decadal variability. These rainfall variations, displaying certain epochs of more rainfall over South Asia than over East Asia and vice versa, suggest an oscillatory behaviour. Teleconnections between South and East Asian monsoon rainfall also exhibit a multi-decadal variation with alternate epochs of strengthening and weakening relationship. Furthermore, large-scale circulation features such as South Asian monsoon trough and north Pacific subtropical high depict zonal oscillatory behaviour with east-west-east shifts. Periods with eastward or westward extension of the Mascarene High, intensification and expansion of the upper tropospheric South Asian High are also projected by the CMIP5 models.  相似文献   

5.
6.
Summer rainfall variability (October to March) shows inter-annual to multi-decadal fluctuations over a vast area of subtropical Argentina between 28°S–38°S and 65°W–70°W. Statistically significant oscillations of quasi-period in the bands of 18–21, 6, 4 and 2 years can be found throughout the region and intra-regionally, though the latter are variable. The lower frequency variation produces alternating episodes of above and below normal rainfall each lasting roughly 9 years. This quasi-fluctuation appears to be shared with the summer rainfall region of South Africa and were in-phase related one another until mid-1970s. The teleconnection between both subtropical regions could be generated by an atmospheric-oceanic bridge through the global sea surface temperatures (SSTs), particularly those of the equatorial-tropical South Atlantic. From mid-1970s, the alternating wet and dry pattern has been interrupted in the Argentine region producing the longest, as yet unfinished, wet spell of the century. Thus, a significant change of the long-term variation was observed around 1977 toward lower frequencies. Since then the statistical model that explains more than 89% of the variance of the series until 1977, diverges from the observed values in the 1980s and 1990s. In addition the Yamamoto statistical index, employed to detect a climatic jump, reaches its major value in 1973 at the beginning of the current long wet spell. Therefore the change could be located between 1973 and 1977. Application of the t-student's test gives significant differences of mean values for pre-1977 and post-1977 sub-samples from both individual time series and the regional index series. The spectral analysis also shows changes in energy bands in concordance with the features of the change that occurred from mid-1970s. The change gives rise to a significant increment of more than 20% in average of normal rainfall over the region. Conversely, a drought between mid-1980s and the 1990s has been observed in the South African counterpart with severe characteristics, thereby continuing the quasi-18-year oscillation. Consequently, the low-frequency coherent behaviour between both the Argentine and South African regions is lost from the mid-1970s. The analysis of association of wet/dry spells and warm/cold, El Niño/La Niña episodes appears to be not significant at scales of year-to-year variability although at decadal to multi-decadal scales the association could be relevant. More than one process of multi-decadal variability of global SSTs could influence the Argentine summer rainfall region and the former bi-decadal teleconnection. Finally, potential hypothetical factors of change are discussed, such as the strengthening of direct and indirect mechanisms of moisture flux transport associated with global warming, low-level atmospheric circulation changes and/or to SSTs mean condition long-term variations over tropical and subtropical South Atlantic and South Pacific oceans.  相似文献   

7.
长江流域夏季降水及其与海温的滞后相关   总被引:7,自引:0,他引:7  
基于月平均台站降水资料分析了中国东部降水的气候特征。由于其降水分布在空间和时间上的复杂性,为便于研究其与海温的关联,特别是海温对降水的影响,根据台站间降水变化在季节变化和年际变化以及与海温相关的一致性,将中国东部区域分成四个子区域。以长江流域的降水为代表,分析了海温对降水的超前相关。给出了主要影响海区和它们的超前时间。综合各影响海区海温和超前时间建立的回归方分析表明:回归降水和观测降水的相关系数大于0.85。回归的平方根误差是其标准差的60%和平均雨量的15%。另外还分析了海温与降水相关与环流变化的一致性。  相似文献   

8.
Analysis of 149 raingauge series (1946–1988) shows a weak positive correlation between late summer rainfalls (January–March) in tropical southern Africa and the Southern Oscillation Index (SOI). The correlation coefficients have been unstable since World War II. They were close to zero before 1970 and significant thereafter. Before 1970, southern African late summer rainfalls were more specifically correlated with regional patterns of sea surface temperature (SST), mainly over the southwestern Indian Ocean. After 1970, teleconnections with near global SST anomaly patterns, i.e. over the central Pacific and Indian oceans, dominate the regional connections. The increase in the sensitivity of the southern African rainfall to the global SO-related circulation anomalies is simultaneous with the correlation between SOI and more extensive SST anomalies, particularly over the southern Indian Ocean. This feature is part of longer term (decadal), global SST variability, as inferred from statistical analyses. Numerical experiments, using the Météo-France general circulation model ARPEGE-Climat, are performed to test the impact of the observed SST warming in the southern Indian and extratropical oceans during El Niño Southern Oscillation (ENSO) events on southern African rainfall. Simulated results show that ENSO events, which occurred in the relatively cold background of the pre-1970 period in the southern oceans, had a little effect on southern Africa climatic conditions and atmospheric circulation. By contrast, more recent ENSO events, with warmer SST over the southern oceans, lead to a climatic bipolar pattern between continental southern African and the western Indian Ocean, which is characterized by reduced (enhanced) deep convection and rainfall over the subcontinent (the western Indian Ocean). A weaker subtropical high-pressure belt in the southwestern Indian Ocean is also simulated, along with a reduced penetration of the moist southern Indian Ocean trade winds over the southern African plateau. These results are consistent with the strong droughts observed over all southern Africa during ENSO events since 1970.  相似文献   

9.
We investigate the large-scale forcing and teleconnections between atmospheric circulation (sea level pressure, SLP), sea surface temperatures (SSTs), precipitation and heat wave events over western Europe using a new dataset of 54 daily maximum temperature time series. Forty four of these time series have been homogenised at the daily timescale to ensure that the presence of inhomogeneities has been minimised. The daily data have been used to create a seasonal index of the number of heat waves. Using canonical correlation analysis (CCA), heat waves over western Europe are shown to be related to anomalous high pressure over Scandinavia and central western Europe. Other forcing factors such as Atlantic SSTs and European precipitation, the later as a proxy for soil moisture, a known factor in strengthening land–atmosphere feedback processes, are also important. The strength of the relationship between summer SLP anomalies and heat waves is improved (from 35%) to account for around 46% of its variability when summer Atlantic and Mediterranean SSTs and summer European precipitation anomalies are included as predictors. This indicates that these predictors are not completely collinear rather that they each have some contribution to accounting for summer heat wave variability. However, the simplicity and scale of the statistical analysis masks this complex interaction between variables. There is some useful predictive skill of summer heat waves using multiple lagged predictors. A CCA using preceding winter North Atlantic SSTs and preceding January to May Mediterranean total precipitation results in significant hindcast (1972–2003) Spearman rank correlation skill scores up to 0.55 with an average skill score over the domain equal to 0.28 ± 0.28. In agreement with previous studies focused on mean summer temperature, there appears to be some predictability of heat wave events on the decadal scale from the Atlantic Multidecadal Oscillation (AMO), although the long-term global mean temperature is also well related to western European heat waves. Combining these results with the observed positive trends in summer continental European SLP, North Atlantic SSTs and indications of a decline in European summer precipitation then possibly these long-term changes are also related to increased heat wave occurrence and it is important that the physical processes controlling these changes be more fully understood.  相似文献   

10.
A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to “lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.  相似文献   

11.
气候变暖背景下我国南方旱涝灾害时空格局变化   总被引:16,自引:7,他引:9  
我国南方地区各季节降水异常主要包含三种优势模态:长江及其以南地区降水呈整体偏多或偏少的一致型,长江中下游流域与华南呈反相变化的南北反相型以及东南与西南呈反相变化的东西反相型。其中一致型是南方地区各季节降水变率的第一优势模态。总体而言,在1961—2013年南方地区平均降水存在明显的年代际和长期趋势变化。其中,夏季和冬季南方区域平均降水具有相似的年代际变化特征,而秋季降水的年代际演变几乎与上述两个季节的相反。不过,在近30年南方各季降水量发生年代际转折的时间不尽相同:春季和秋季降水分别在21世纪初期和20世纪80年代中后期之后进入干位相,冬季和夏季降水则分别在80年代中期和90年代初期之后进入湿位相。自21世纪初期以来,南方夏季和冬季降水逐渐转入中性位相。此外,南方春季和秋季降水均呈减少趋势;而夏季和冬季则相反,均呈增多趋势。对于西南地区,除了春季外,其他三个季节的降水均呈减少趋势,出现了季节连旱的特征,尤其是秋旱最为严重。不过,不管是季节降水量还是旱/涝日数,在我国南方大部分地区其线性变化趋势并不十分显著,这与南方降水年代际分量对降水变率存在较大贡献相关。分析还发现,我国南方区域洪涝受灾面积具有比较明显的年代际变化,而干旱受灾面积则没有明显的年代际变化特征,近十多年来西南地区干旱和洪涝受灾出现了交替互现的特点。  相似文献   

12.
Identifying and removing the influence of atmospheric circulation variability on central England temperature increases the statistical significance of warming trends in spring, autumn and the annual mean over the last 50 years. The trends are more detectable because the circulation changes contribute greatly to the ‘noise’ of interannual to interdecadal variability, but induce only small multi-decadal trends (the ‘signal’). Factoring out the circulation can thus enhance the signal-to-noise ratio. For precipitation, the recent enhancement in the difference between summer rainfall in south-east England and winter precipitation in northern Scotland can partly be explained by atmospheric circulation variability over the past 40 years (particularly the increase in the North Atlantic Oscillation index from the 1960s to the early 1990s).  相似文献   

13.
We present seasonal precipitation reconstructions for European land areas (30°W to 40°E/30–71°N; given on a 0.5°×0.5° resolved grid) covering the period 1500–1900 together with gridded reanalysis from 1901 to 2000 (Mitchell and Jones 2005). Principal component regression techniques were applied to develop this dataset. A large variety of long instrumental precipitation series, precipitation indices based on documentary evidence and natural proxies (tree-ring chronologies, ice cores, corals and a speleothem) that are sensitive to precipitation signals were used as predictors. Transfer functions were derived over the 1901–1983 calibration period and applied to 1500–1900 in order to reconstruct the large-scale precipitation fields over Europe. The performance (quality estimation based on unresolved variance within the calibration period) of the reconstructions varies over centuries, seasons and space. Highest reconstructive skill was found for winter over central Europe and the Iberian Peninsula. Precipitation variability over the last half millennium reveals both large interannual and decadal fluctuations. Applying running correlations, we found major non-stationarities in the relation between large-scale circulation and regional precipitation. For several periods during the last 500 years, we identified key atmospheric modes for southern Spain/northern Morocco and central Europe as representations of two precipitation regimes. Using scaled composite analysis, we show that precipitation extremes over central Europe and southern Spain are linked to distinct pressure patterns. Due to its high spatial and temporal resolution, this dataset allows detailed studies of regional precipitation variability for all seasons, impact studies on different time and space scales, comparisons with high-resolution climate models as well as analysis of connections with regional temperature reconstructions. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
A nine-member ensemble of simulations with a state-of-the-art atmospheric model forced only by the observed record of sea surface temperature (SST) over 1930–2000 is shown to capture the dominant patterns of variability of boreal summer African rainfall. One pattern represents variability along the Gulf of Guinea, between the equator and 10°N. It connects rainfall over Africa to the Atlantic marine Intertropical Convergence Zone, is controlled by local, i.e., eastern equatorial Atlantic, SSTs, and is interannual in time scale. The other represents variability in the semi-arid Sahel, between 10°N and 20°N. It is a continental pattern, capturing the essence of the African summer monsoon, while at the same time displaying high sensitivity to SSTs in the global tropics. A land–atmosphere feedback associated with this pattern translates precipitation anomalies into coherent surface temperature and evaporation anomalies, as highlighted by a simulation where soil moisture is held fixed to climatology. As a consequence of such feedback, it is shown that the recent positive trend in surface temperature is consistent with the ocean-forced negative trend in precipitation, without the need to invoke the direct effect of the observed increase in anthropogenic greenhouse gases. We advance plausible mechanisms by which the balance between land–ocean temperature contrast and moisture availability that defines the monsoon could have been altered in recent decades, resulting in persistent drought. This discussion also serves to illustrate ways in which the monsoon may be perturbed, or may already have been perturbed, by anthropogenic climate change.  相似文献   

15.
The association between bi-decadal rainfall variability over southern Africa and the rainfall contributed by tropical cyclonic systems from the Southwest Indian Ocean (SWIO) provides a potential means towards understanding decadal-scale variability over parts of the region. A multi-decadal period is considered, focusing on the anomalous tropospheric patterns that induced a particularly wet 8-year long sub-period over the Limpopo River Basin. The wet sub-period was also characterized by a larger contribution to rainfall by tropical cyclones and depressions. The findings suggest that a broadening of the Hadley circulation underpinned by an anomalous anticyclonic pattern to the east of southern Africa altered tropospheric steering flow, relative vorticity and moisture contents spatially during the sub-period of 8 years. These circulation modulations induced enhanced potential for tropical systems from the SWIO to cause precipitation over the Limpopo River Basin. The same patterns are also conducive to increasing rainfall over the larger subcontinent, therefore explaining the positive association in the bi-decadal rainfall cycle and rainfall contributed by tropical cyclonic systems from the SWIO. An overview of regional circulation anomlies during alternating near-decadal wet and dry epochs is given. The regional circulation anomalies are also explained in hemispheric context, specifically in relation to the Southern Annular Mode, towards understanding variation over other parts of the Southern Hemisphere at this time scale.  相似文献   

16.
Rainfall variability is a crucial factor in food production,water resource planning and ecosystems, especially in regions with scarce freshwaterresources. In West Africa rainfall has been subject to largedecadal and interdecadal variations during the 20th century. The most prominent feature is thereduction in rainfall amount throughout the second half of the century with somerecovery at the end. Among the conceivable mechanisms, which might inducesuch low-frequency variability in West African precipitation, this study isfocussed onsea surface temperature (SST) variations and increasing greenhouse gas (GHG)concentrations. A tool is presented to distinguish between both impacts bymeans of various climate model simulations, which are found to reproduce theobserved rainfall characteristics over West Africa reasonably well.Further, a multi-model approach is usedto evaluate the expected future greenhouse signal in West African rainfall with respect to natural variability and intermodel variations.It is found that observed SST fluctuations, forcing two different atmospheric climate models, are able to reproduce the main features ofobserved decadal rainfall anomalies in the southern part of West Africathroughout the second half of the 20th century. The seasonal response to varying SST isstrongest in summer when the region is undergoing intensive monsoondynamics. Whereas both atmospheric models simulate the observeddrought tendency,following the 1960s, there is some indication that the additional GHG forcing in one model inducessome significantly different rainfall anomalies in recent years, re-initiatingeven positive anomalies relative to the climatological mean which has alsobeen observed since the 1990s. However, thisresult is still subject to model uncertainty.Coupled climate model integrations with different climate change scenariosalsopredict that precipitation, particularly over the Guinea Coast and Sahelregion, will steadily increase into the 21st century. The model-comprehensive signal isstatistically significant with respect to natural variability and modeluncertainty, suggesting that the observed recovery of yearly rainfall overparts of West Africa might actually reflect the beginning impact of risinganthropogenic GHG. The physical mechanism, linking the radiative forcing tothe monsoonal rainfall, probably works via warming of the tropicalAtlantic Ocean.  相似文献   

17.
ENSO对中国夏季降水可预测性变化的研究   总被引:16,自引:5,他引:16  
高辉  王永光 《气象学报》2007,65(1):131-137
众多研究表明,ENSO对东亚夏季风尤其是中国夏季降水存在很大影响,已成为中国夏季降水首要的预测因子。传统的预测模型认为,当前期ENSO为暖位相状态时,夏季中国主要雨带位置偏南,长江流域降水偏多;反之,当前期ENSO为冷位相状态时,夏季中国主要雨带位置偏北,长江流域降水偏少。基于1951—2003年中国160站月平均降水资料和同时段的NOAA ERSST海表温度资料,讨论了中国夏季降水和前冬Nino3区海温关系的年代际变化。分析结果显示,近20年来二者相关性已大大衰减。作为中国夏季降水的主要预测指标,ENSO的指示意义也相应减弱。在1951—1974年,依据前冬Nino3区SSTA预测夏季降水符号准确率在67%以上的站数有43站,但在1980—2003年,同样准确率的站数只有15站。在前一个研究时段,这43站呈区域性分布于东北地区、黄河和长江流域,但后一个研究时段内的15站分布分散,不利于区域性预测。相关分析结果表明,在20世纪70年代中期之前,当前冬赤道东太平洋海温偏高时,华北和江南南部的多数测站夏季降水偏多,淮河流域降水偏少,同时梅雨开始偏晚。反之,当前冬赤道东太平洋海温偏低时,华北和江南南部夏季降水易偏少,淮河流域降水则偏多,同时梅雨开始偏早。但在20世纪80年代之后,上述对应关系较难成立。因此,在汛期预测业务中参考ENSO的作用时必须充分考虑年代际背景的差异。  相似文献   

18.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

19.
The present study investigates the interdecadal change in the relationship between southern China (SC) summer rainfall and tropical Indo-Pacific sea surface temperature (SST). It is found that the pattern of tropical Indo-Pacific SST anomalies associated with SC summer rainfall variability tends to be opposite between the 1950–1960s and the 1980-1990s. Above-normal SC rainfall corresponds to warmer SST in the tropical southeastern Indian Ocean (SEIO) and cooler SST in the equatorial central Pacific (ECP) during the 1950–1960s but opposite SST anomalies in these regions during the 1980–1990s. A pronounced difference is also found in anomalous atmospheric circulation linking SEIO SST and SC rainfall between the two periods. In the 1950–1960s, two anomalous vertical circulations are present between ascent over SEIO and ascent over SC, with a common branch of descent over the South China Sea that is accompanied by an anomalous low-level anticyclone. In the 1980–1990s, however, a single anomalous vertical circulation directly connects ascent over SC to descent over SEIO. The change in the rainfall–SST relationship is likely related to a change in the magnitude of SEIO SST forcing and a change in the atmospheric response to the SST forcing due to different mean states. A larger SEIO SST forcing coupled with a stronger and more extensive western North Pacific subtropical high in recent decades induce circulation anomalies reaching higher latitudes, influencing SC directly. Present analysis shows that the SEIO and ECP SST anomalies can contribute to SC summer rainfall variability both independently and in concert. In comparison, there are more cases of concerted contributions due to the co-variability between the Indian and Pacific Ocean SSTs.  相似文献   

20.
Based on the observation data and the reanalysis datasets, the variability and the circulation features influencing precipitation in the Tibetan Plateau (TP) are investigated. Taking into account the effects of topography, surface winds are deconstructed into flow-around and flow-over components relative to the TP. Climatologically, the flow-around component mainly represents cyclonic circulation in the TP during the summer. The transition zone of total precipitation in the summer parallels the convergence belt between the southerlies and the northerlies of the flow-over component. The leading mode of rainfall anomalies in the TP has a meridional dipole structure, and the first principal component (PC1) mainly depicts the variation of rainfall in the southern TP. The wet southern TP experiences strengthened flow-over, which in turn mechanistically favors intensified ascent forced by the flow-over component. In addition, variations in the Indian summer monsoon (ISM) have an important role in influencing the flow over the southern TP, and the ISM ultimately impacts the precipitation over southern TP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号