首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
一次鄂西地区暴雨过程中地形敏感性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用WRF模式中提供的不同平滑地形方案对2007年5月30-31日发生在湖北西部地区的暴雨过程进行数值模拟。在此基础上,利用WRF模式进行地形高度敏感性试验。结果表明:地形平滑方案与降水的时空分布有很大的相关性,地形越接近实际地形,降水的时空分布越接近实况;地形高度对降水的强度及落区影响较大,随着山脉地形高度的增加,迎风坡和背风坡的2个降水中心带有远离山脉的趋势,当山脉高度达到一定高度以后,迎风坡和背风坡的两个降水中心带又有靠近山脉的趋势。  相似文献   

2.
亚洲夏季风区中尺度地形降水结构及分布特征   总被引:4,自引:0,他引:4  
采用高分辨率TRMM、AIRS卫星实测资料, 从气候态的降水微物理过程角度分析了亚洲夏季风期间中尺度山脉对不同性质降水垂直结构和水平分布的影响。研究表明, 中尺度山脉迎风、背风坡均以层云降水为主, 层云降水强度在迎风坡强于背风坡; 对流降水在迎风坡主要为浅对流, 背风坡主要为深对流, 对流降水强度在背风坡强于迎风坡。沿西南季风推进方向依次经过的中尺度山脉, 其两侧发生降水像素个数、 降水微物理特征等差异逐渐减小, 其中, 对流降水迎风坡向背风坡转变明显, 而层云降水背风坡向迎风坡转变明显。大气稳定度与对流降水在迎风、背风坡的分布相一致。另外, 对中尺度地形降水的研究为区域气候模式模拟高精度地形降水分布提供了实测依据。  相似文献   

3.
地形降水试验和背风回流降水机制   总被引:7,自引:2,他引:7  
李子良 《气象》2006,32(5):10-15
利用中尺度数值模式(ARPS模式)研究了湿气流过山脉地形和地形降水的产生机制。研究结果表明,地形降水是水汽、气流和地形相互作用而形成的。小山脉地形降水主要发生在山脉的迎风坡,表现出典型的迎风降水和背风雨影特征。而回流降水天气是湿气流过大的山脉地形的产物,大的山脉地形有利于风切变临界层的产生,地形降水并不只是简单的上坡降水,还有背风回流和背风波降水机制。  相似文献   

4.
地形对华北地区夏季降水影响的数值模拟研究   总被引:37,自引:10,他引:27  
范广洲  吕世华 《高原气象》1999,18(4):659-667
行星大气中地形效应的研究一直是人们十分重视的问题。本语文利用引进的NCAR-RegCM2模式就地形对华北地区夏季降水的影响进行了数值模拟研究。结果表明,华北地区西部和北部的山脉地形对华北地区夏季降水有着非常重要的影响。尤其是对一些局地地区,甚至起到了决定性的作用。当降低地形高度时,华北地区夏季降水将明显减少。其物理机制可能主要有两点,一是降低地莆高度后,使华北地区迎风坡地形抬升作用减弱,从而减少了  相似文献   

5.
摘 要:开展塔克拉玛干沙漠沙垄起伏地形夏季地表温度观测试验,旨在为塔克拉玛干沙漠环境陆面过程研究提供科学依据。2019年6月7日至9月2日在塔中地区,沿沙垄迎风坡以及背风坡底部、中部、上部、顶点及垄间谷地共设8个地表温度观测点。结果表明:(1)夏季沙垄地表温度最高温出现在垄间谷地,为74.63 ℃,最低温出现在迎风坡底部,为10.52 ℃;地表温度一天中在7:00左右达到最低,15:00左右达到最高。(2)晴天、多云以及浮尘天各观测点地表温度日均变化曲线呈单峰型,降水、扬沙及沙尘暴天呈双峰型;地表温度的最高温与日均值最大值均出现在晴天的垄间谷地,地表温度的最低温及日均值最小值均出现在降水天的迎风坡底部。(3)沙垄顶点与两个底部最大温差范围是顶点与背风坡底部在晴天的温差范围,为0~18.62 ℃,最小温差范围是顶点与迎风坡底部在降水天的温差范围,为0.01~6.18 ℃;迎风坡和背风坡在晴天地表温度温差范围最大,为0.01~16.93 ℃,在降水天温差范围最小,为0.01~4.15 ℃;顶点与两个底部夏季综合温差范围在0~18.62 ℃,迎风坡与背风坡夏季综合温差范围为0~16.93 ℃。塔克拉玛干沙漠地表温度受典型天气影响变化类型多样,沙垄顶点与底部、迎风坡与背风坡地表温度差异受风力及地形作用明显。  相似文献   

6.
利用高分辨率区域气候模式RegCM3对华北地区1996年夏季降水进行了数值模拟,对照中国台站的实测资料,对模拟的夏季降水量日变化特征进行了比较,在此基础上,设计了太行山地形敏感性试验,模拟了太行山脉地形高度变化对1996年夏季发生在华北地区的3次典型暴雨过程的影响.研究结果认为,RegCM3模式能够较好地模拟1996年夏季华北地区雨带位置及主要降水过程,对3次典型暴雨过程中暴雨中心的落区及位置移动均有较好的表现,不足的是模拟的降水量偏大.地形敏感性试验结果发现,太行山地形对华北暴雨天气过程有着重要影响,但是对于不同型态的暴雨过程,地形的影响有不同表现.对于太行山区型暴雨,太行山地形的阻挡和抬升作用导致迎风坡和背风坡降水增加,而去掉地形后太行山两侧降水明显减少;对于回流型暴雨,降水系统从东北地区南部向西南方向移动,低层气流主要为偏东型气流,地形的存在对于降水系统的西移速度及降水落区均有重要影响,去掉地形后太行山东侧降水明显减少;对于东移型暴雨,降水从太行山南麓向东北方向移动,太行山脉对于环流形势的影响并不明显,因而仅影响降水强度,对降水位置影响不大.  相似文献   

7.
太行山地形对一次河北暴雨过程影响的数值研究   总被引:2,自引:1,他引:1  
应用MM5模式对2000年7月5日河北省中南部的暴雨个例进行数值模拟及诊断分析,探讨了太行山脉对于河北省暴雨的影响.结果表明:降水分布在太行山东部迎风坡上,且强降水中心与喇叭口地形相对应,地形雨特征明显.在高分辨率模式模拟中,地形资料越精细,对迎风坡地形暴雨特征模拟能力越好.本次个例中低层东风越大,造成的迎风坡降水越强.近地面层受地形影响,气流表现为局地环流特征,随山脉的起伏,各物理场均有波动的特征.  相似文献   

8.
袁育枝 《气象》1979,5(10):34-36
地表状况是气候形成的一个重要因素,山地地形对降水的影响十分明显。河北省山地主要属于太行山和燕山两系,成弧状分布。省内多雨带及暴雨中心基本上依山脉走向分布,强烈表现出山地对降水的作用。 山地对降水形成的作用,大致可以归结为两方面。第一,山地能产生局地环流,山谷风即是明显的例子。第二,气流遇到山脉被抬升。因此在暖湿气流盛行方向的迎风坡上,形成雨坡。背风坡则由于到达此处的气流的水汽含量已迅速减少,加上气流下沉的焚风效  相似文献   

9.
卫星资料揭示的中尺度地形对南海夏季气候的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
徐海明  何金海  谢尚平 《大气科学》2007,31(5):1021-1031
利用一组高分辨率的卫星观测资料, 研究了中尺度地形, 特别是中南半岛长山山脉对南海夏季区域气候的影响。分析表明, 当夏季暖湿、不稳定的西南季风接近长山山脉时, 由于地形的强迫抬升作用在山脉的迎风一侧形成强降水区, 而在山脉的背风一侧、南海西部则形成无降水区或降水量相对较少的区域。另外, 盛行的西南季风气流绕过长山山脉的南端, 在越南东南沿海明显形成一支边界层低空急流。这支低空急流通过其引起的蒸发冷却和沿岸上翻流在其北侧形成一片冷海水区, 该冷水区的形成反过来又对其上的热带对流活动产生影响。研究还表明, 南海中部夏季降水分布呈现东多、西少东西向分布不均匀特征, 而降水这种东西向分布不均匀形成可能与中南半岛上中尺度地形的作用有关, 严重低估中尺度地形的影响可能是造成全球大气环流模式模拟南海季风夏季降水时存在严重误差的主要原因。  相似文献   

10.
1961-2010年吉林不同类型暴雪天气气候特征   总被引:1,自引:0,他引:1  
利用1961-2010年冬季(当年10月至次年3月)吉林逐日降水资料,统计分析了不同类型暴雪的时间演变规律、地域分布特征、地形对暴雪的影响,以及暴雪的影响系统及高空地面系统配置情况。结果表明,吉林暴雪在时间分布上具有较大的年际变率和明显的阶段性变化特征,暴雪的年际、年代际变化趋势与冬季气温变化趋势一致。暴雪主要发生在秋末冬初(10月、11月)和冬末春初(3月)。区域和大范围Ⅰ型暴雪3月最多,Ⅱ型暴雪10月最多。暴雪的空间分布差异较大,地域特征明显,天气系统与长白山山脉的共同作用,使暴雪分布在长白山山脉的迎风坡,且山区明显多于大兴安岭的背风坡和平原地区。暴雪的高空影响系统以高空槽居首,冷涡次之,切变最少;受高空槽影响时,局地暴雪地面系统以低压倒槽为最多,区域和大范围暴雪则以华北及江淮气旋为最多;受高空冷涡影响时,局地暴雪的地面系统以蒙古气旋居首,区域和大范围暴雪则以低压倒槽最多。就地面系统而言,区域以上的Ⅰ型暴雪以华北气旋最多,Ⅱ型暴雪则以蒙古气旋最多。  相似文献   

11.
高婷  曾燕  何永健  邱新法 《气象科学》2014,34(5):473-482
提出一个基于NCEP风向数据估算全国夏季降水的模型。根据NCEP地面气压、经纬向风数据计算得到全国1971—2000年夏季各月盛行风向;并将盛行风向与宏观坡向夹角的余弦值作为降水的坡向因子,以此区分山体迎风坡和背风坡降水的空间分布。利用站点观测资料、数字高程模型数据、坡向、坡度因子,采用逐步回归分析法,建立估算夏季降水的回归方程,得到全国1971—2000年夏季各月及总降水量的空间分布图,并对模型结果进行检验与对比分析。结果表明,此方法估算夏季总降水量的平均绝对误差为27 mm,平均相对误差为11.8%。模型结果能体现迎风坡与背风坡的雨量差,符合客观规律,能够定性、定量地再现中国夏季降水的实际空间分布特征。  相似文献   

12.
A large amount of accumulated precipitation was recorded over the Eastern Periphery of the Tibetan Plateau (EPTP) in August 2020. Using hourly rain gauge records and the ERA5 reanalysis dataset, we analyzed the unique characteristics of rainfall in August and the accompanying circulation conditions and conducted a comparison with previous data. This record-breaking amount of accumulated rainfall was centered on the northern slope of the EPTP. This location was in contrast with the historical records of the concentration of rainfall over the middle and southern slopes. The hourly rainfall in August 2020 was both more frequent and more intense than the climatological mean rainfall. An amplification effect of the topography was observed, with the precipitation over the EPTP showing a more significant change with terrain height in August 2020. A circulation analysis showed that cold (warm) anomalies existed over the north (south) of approximately 35°N compared with those in the years when the southern EPTP received more rain. The western Pacific subtropical high was more intense and extended to the west, and the low-level cold air from the north was more active. The enhanced low-level southerly winds on the periphery of the subtropical high injected warm, moist air further north than the climatological mean. These winds became easterly near the northern EPTP and were forced to ascend by the steep terrain.  相似文献   

13.
本文通过多套观测与再分析降水资料的比较,分析了雅鲁藏布江流域夏季降水的特征,从水汽含量与水汽输送的角度检验了雅鲁藏布江水汽通道的特点,研究了流域夏季降水的年际变化及其原因。分析表明:(1)该流域夏季降水大值位于雅鲁藏布江出海口至大峡谷一带,观测中流域平均降水可达5.8 mm d-1。不同资料表现的降水空间分布一致,但再分析降水普遍强于观测,平均为观测的2倍左右。(2)该流域夏季的水汽主要来自印度洋和孟加拉湾的偏南暖湿水汽输送,自孟加拉湾出海口沿布拉马普特拉河上溯至大峡谷,即雅鲁藏布江水汽通道。水汽收支诊断表明,夏季流域南部(即水汽通道所在处)是水汽辐合中心,流域平均的辐合约9.5 mm d-1,主要来自风场辐合与地形坡度的贡献。(3)不同再分析资料表现的流域降水和水汽分布特征总体一致,但量值差异较大。NCEP(美国国家环境预报中心)气候预报系统再分析资料CFSR、日本气象厅再分析资料JRA-25较欧洲中期天气预报中心再分析ERA-Interim资料更适于研究该流域(青藏高原东南部)的水汽特征,因为后者给出的流域降水和水汽偏强。(4)近30年该流域夏季降水无显著趋势,以年际变率为主。年际异常的水汽辐合(约为气候态的35.4%)源自异常西南风导致的局地水汽辐合(纬向、经向辐合分别贡献了16.5%、83.5%),地形作用很小。流域夏季降水的年际变化是由印度夏季风活动导致的异常水汽输送造成的,其关键系统是印度季风区北部的异常气旋(反气旋)式水汽输送。  相似文献   

14.
The role of various mountains in the Asian monsoon system is investigated by AGCM simulations with different mountains. The comparison of the simulation with Asian mountains (MAsia run) with the simulation without mountains (NM run) reveals that the presence of the Asian mountains results in a stronger South Asian summer monsoon (SASM), characterized by enhanced lower-tropospheric westerly winds, upper-tropospheric easterly winds, and stronger water vapor convergence. In East Asia, the southerly winds and water vapor convergence are significantly strengthened in association with the intensified zonal pressure gradient between the East Asian continent and the Pacific Ocean. Both the dynamical and thermodynamic forcing of the Tibetan Plateau play important role in strengthening the Asian summer monsoon. In winter, the presence of Asian mountains significantly strengthens the continental high, which leads to a stronger Asian winter monsoon. The presence of African--Arabian mountains helps to intensify the exchange of mass between the Southern Hemisphere and Northern Hemisphere by strengthening the cross equatorial flows in the lower and upper troposphere over East Africa. Asian mountains also play a crucial role in the seasonal evolution of Asian monsoons. In comparison with the NM run, the earlier onset and later withdrawal of lower-tropospheric westerly winds can be found over South Asia in the MAsia run, indicating a longer SASM period. The African--Arabian mountains also moderately contribute to the seasonal variation of the South Asian monsoon. In East Asia, the clear south-to-north march of the southerly winds and subtropical rainfall starts to occur in early summer when the effects of Asian mountains are considered.  相似文献   

15.
Summer precipitation over the Yangtze River basin (YRB) in 2020 experienced a strong subseasonal and synoptic fluctuation in addition to contributing to an exceptionally large seasonal mean precipitation. The cause of this higher-frequency fluctuation is examined based on observational analyses. Apart from the continuous northward movement of the climatological mei-yu rainband, the mei-yu rainbelt in the summer of 2020 experienced multiple northward and southward swings. The cause of the swings was attributed to the subseasonal variability of southerly winds to the south and northeasterly winds to the north of the YRB. In addition, synoptic-scale variability, characterized by the eastward propagation of low-level cyclonic vorticity and precipitation anomalies, was also commonplace in the summer of 2020. While the strengthening of both the subseasonal and synoptic variabilities in the summer of 2020 was attributed to the increase of the background mean moisture, the synoptic variability was greatly affected by the subseasonal rainfall variability. As a result, both the synoptic-scale and subseasonal variabilities contributed to the north-south swings of the rainbelt. The large-scale modulations by both the seasonal mean and subseasonal anomalies provide insight regarding the optimization of issuing accurate, extended-range forecasts of extreme weather events.  相似文献   

16.
This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.  相似文献   

17.
利用1982—2020年三江平原19个国家气象观测站土壤湿度及同期降水、气温数据, 基于相关系数和自相关系数统计方法, 分析了黑龙江省三江平原土壤湿度记忆性及与降水、气温之间的关系。结果表明: 春、夏季三江平原土壤湿度记忆时间均在10—40 d, 各层土壤湿度记忆性的空间分布以中间层(10—20 cm)土壤湿度平均记忆时间最长, 呈上下层递减的趋势; 春季三江平原10—20 cm土层土壤湿度的记忆时长平均20 d, 夏季平均17 d; 夏季土壤湿度记忆性强度大于春季, 空间分布以三江平原西部的记忆性较强, 随着土层的增加土壤湿度记忆性有增大的趋势。降水是三江平原土壤湿度主要来源, 受降水和气温协同作用的影响, 夏、秋季土壤湿度与同期降水量、温湿指数均存在显著的正相关关系; 春季土壤湿度与前期秋冬季降水亦呈显著正相关, 与前期温湿指数呈负相关, 前期秋冬季气温的升高会促进土壤的融冻, 从而使当年春季土壤水分增加。  相似文献   

18.
南亚夏季风的变化决定着印度半岛的旱涝状况,气候系统模式则是研究南亚夏季风变化规律的重要工具。本文基于观测和JRA55再分析资料,系统评估了FGOALS-g3模式模拟的南亚夏季风气候态和年际变率,并重点关注FGOALS-g3与FGOALS-g2以及是否考虑海气相互作用的模拟差异。结果表明,由于局地海温模拟的变化,相比于FGOALS-g2,FGOALS-g3模拟的南亚夏季风在气候态热带印度洋信风和El Ni?o期间沃克环流下沉支上有明显改进。同时,由于对流层系统性冷偏差持续存在并且中心位于副热带300 hPa附近,造成气候态上经向温度梯度减弱,使季风环流减弱,导致FGOALS-g3中陆地季风槽的水汽辐散偏差和降水干偏差仍然存在;在年际变率上,FGOALS-g3模拟的El Ni?o期间赤道西太平洋海温冷异常偏弱,印度洋偶极子偏强,导致印度半岛下沉运动减弱,FGOALS-g3中ENSO—印度降水负相关关系也依然偏弱。研究表明,耦合过程导致的气候态海温偏差通过改变环流和水汽输送,有效补偿了大气模式中印度半岛中部和中南半岛的降水湿偏差;在年际变率上,耦合模式由于考虑了海温—降水—云短波辐射的负反馈过程,能够减小大气模式模拟偏差的强度,但印太暖池区海温模拟偏差导致沃克环流下沉支偏西,使得印度半岛的降水响应出现更大的湿偏差。  相似文献   

19.
东北夏季降水的气候及异常特征分析   总被引:7,自引:2,他引:7  
采用统计分析的方法对近50 a东北夏季降水的气候及异常特征进行了分析。结果表明:东北夏季降水空间分布很不均匀,除三江平原地区外东北大部7月降水最多;夏季全区出现较重干旱的概率大于较重雨涝,旱灾更为突出,其中辽西是较重旱涝频发的地区;近50 a夏季降水没有明显变干或变湿的倾向,而是具有阶段性旱涝交替特征,存在27、11 a左右的年代际尺度周期和3~6 a左右的年际尺度周期变化;6月旱灾几率大,易形成6~7月的连续干旱,7月易形成区域性特大涝灾,6月和8月在年代际尺度上具有反位相变化的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号