首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用TOGA-TAO赤道次表层海流与海温观测资料,比较清楚地揭示了1997/1998年El Nin^~o期间在赤道西太平洋暖池上空西风异常的驱动下,次表层异常海流的产生机制和向东传播过程中的变化特征。对比分析了海表、次表层异常海流的两种热力平流过程,即水平温度平流和因海流水平辐合辐散造成的垂直上翻(或下沉)运动对混合层及海表温度异常的贡献,结果证实了后一效应对ENSO发生发展的重要意义。最后还对文中的海流异常是否就是理论分析得到的Kelvin波在海流场上的反映进行了讨论。  相似文献   

2.
热带太平洋-印度洋海温异常综合模的数值模拟   总被引:1,自引:0,他引:1  
通过数值模拟及结果的合成分析,对热带太平洋-印度洋异常海温综合模态的三维热力结构、动力结构及其发生发展的可能机制进行了研究.数值模拟结果的分析表明,太平洋、印度洋海温异常的综合模态在表层、次表层的表现都很明显,即在赤道西印度洋、中东太平洋的海温偏高(低)时,赤道西太平洋、东印度洋的海温偏低(高),该模态还存在着显著的年变化特征、年际变化特征以及年代际变化特征.数值模拟的合成分析结果表明,异常的海表风应力引起表层洋流异常,表层洋流异常及由其引起的海表高度异常可导致次表层海水环流的异常,海洋环流异常导致的平流热输送异常是海温形成异常综合模态的主要原因之一,垂直输送是形成次表层海温综合模态的主要原因.平流热输送过程对海表温度变异的贡献是:在事件发生到盛期阶段促进了次表层海温异常综合模态的形成,在盛期到消亡阶段次表层的平流过程阻碍其进一步发展;短波辐射是海洋的主要热力来源,海表面异常的净短波辐射通量、潜热通量是表层海温形成异常模态的主要热力学原因,异常的海表面净短波辐射通量、潜热通量、感热通量在到达盛期阶段后抑制其进一步发展.  相似文献   

3.
用一个中等复杂程度的热带海气耦合模式研究了气候基本态的季节变化在ElNi o事件成熟位相锁定中的作用。结果表明 ,模式模拟出了ElNi o事件成熟位相锁定在年底左右的基本特征。由海洋气候基本态的季节变化所引起的平流的季节变化是ElNi o事件成熟位相锁定在年底的机制。在ElNi o事件期间 ,1~ 5月份 ,赤道中东太平洋地区的海洋气候基本态所引起的暖平流较弱 ,较弱暖平流造成海表温度异常降低 ,使海气耦合不稳定度较弱 ,从而使ElNi o事件衰减。 6~ 1 2月份 ,赤道中东太平洋地区的海洋气候基本态所引起的暖平流较强 ,较强暖平流造成海表温度异常升高 ,使海气耦合不稳定度加强 ,从而使ElNi o事件发展。这样 ,在年底左右 ,赤道中东太平洋地区形成海表温度异常的一个极值点 ,形成ElNi o事件成熟位相。海洋垂直 (经向 )平均流的季节变化产生的平流的季节变化最 (次 )强 ,因此 ,海洋垂直 (经向 )平均流是ElNi o事件成熟位相锁定在年底的主 (次 )要因子。  相似文献   

4.
张恩才  杨修群 《气象科学》1996,16(3):206-214
本文利用1970至1989年共20年的逐月平均的太平着区的表面风应力和海表温度距平的分析资料,检验了以前设计的热带太平洋和热带大气距平模式的模拟性能,通过使用两组风应力异常场即观测场和热带大气模式对观测海温响应所得的模拟场,重点分析了热带太平洋距平模式对风应力异常的响应特征,结果表明,本文海洋距平模式完全有能力再现ENSO循环折际变化性及其水平结构,且赤道中太平洋区域的低频风应力异常对于ENSO事  相似文献   

5.
El Niño事件成熟位相锁定在年底的物理过程研究   总被引:2,自引:0,他引:2       下载免费PDF全文
严邦良 《大气科学》2004,28(4):481-492
用一个中等复杂程度的热带海气耦合模式研究了气候基本态的季节变化在El Ni?o事件成熟位相锁定中的作用.结果表明,模式模拟出了El Ni?o事件成熟位相锁定在年底左右的基本特征.由海洋气候基本态的季节变化所引起的平流的季节变化是El Ni?o事件成熟位相锁定在年底的机制.在El Ni?o事件期间,1~5月份,赤道中东太平洋地区的海洋气候基本态所引起的暖平流较弱,较弱暖平流造成海表温度异常降低,使海气耦合不稳定度较弱,从而使El Ni?o事件衰减.6~12月份,赤道中东太平洋地区的海洋气候基本态所引起的暖平流较强,较强暖平流造成海表温度异常升高,使海气耦合不稳定度加强,从而使El Ni?o事件发展.这样,在年底左右,赤道中东太平洋地区形成海表温度异常的一个极值点,形成El Ni?o事件成熟位相.海洋垂直(经向)平均流的季节变化产生的平流的季节变化最(次)强,因此,海洋垂直(经向)平均流是El Ni?o事件成熟位相锁定在年底的主(次)要因子.  相似文献   

6.
对热带太平洋海表经向风应力异常与 E1 Ni o事件之间的关系进行了诊断分析。结果表明,超前的经向风应力距平场与NINO3区(15°-90°W,5°S-5°N)的海面温度异常(SSTA)有显著的超前相关,这种相关性在超前6个月甚至更早一些就有显示。利用奇异值分解方法分析超前的经向风应力距平场与太平洋海表温度异常场之间的耦合模,结果表明对应于赤道中东太平洋的海面温度异常升高,大气风应力场在超前6个月甚至更早的时候,在赤道中东太平洋表现为辐合的经向异常风应力场,即赤道以北为北风异常应力,赤道以南为南风异常应力。这种耦合模的时间系数与 NINO3 SSTA指数所表示的 EIio事件有很好的对应关系,表明这种耦合模反映的正是超前的经向风应力异常与 El NiB o事件所对应的海表温度异常之间的相关核态。通过与热带西太平洋纬向风应力异常的比较,赤道中东太平洋辐合的经向风应力异常与ElNifio事件发生的同样具有重要的联系。  相似文献   

7.
降水对热带海表温度异常的邻域响应 I. 数值模拟   总被引:23,自引:4,他引:23       下载免费PDF全文
吴国雄  刘还珠 《大气科学》1995,19(4):422-434
基于低阶大气环流谱模式,本文设计了太平洋及印度洋4个不同海域的海表温度异常试验,去研究大气环流及降水对热带海表温度异常强迫作用的“同时”性响应。结果表明尽管暖性的海表温度异常均激发出低空辐合及高空辐散,但在不同海域所激发的异常流场却差异甚大。不过降水异常均发生在海表温度异常区及其毗邻处。它在对称的SSTA区的分布一般是非对称的。对水汽收支的分解分析表明,海表温度异常区异常降水的大小主要由异常的低空辐合决定,而异常降水的分布形态则由异常的水汽平流过程所决定。由于异常的低空辐合及异常的水汽平流过程主要发生在海  相似文献   

8.
气象向量场奇异值分解方法及其应用   总被引:20,自引:7,他引:20  
给聘个实现气象向量场时间序列奇异值分解的简单方案。用它分析赤道太平洋区域年际尺度海气异常关系。揭示出一对与ENSO循环关系密切的100hPa风异常与海表温度异常间的强相关模态。  相似文献   

9.
用一个中等复杂程度的热带海气耦合模式研究了气候基本态的季节变化在El Ni(n)o事件成熟位相锁定中的作用.结果表明,模式模拟出了El Ni(n)o事件成熟位相锁定在年底左右的基本特征.由海洋气候基本态的季节变化所引起的平流的季节变化是El Ni(n)o事件成熟位相锁定在年底的机制.在El Ni(n)o事件期间,1~5月份,赤道中东太平洋地区的海洋气候基本态所引起的暖平流较弱,较弱暖平流造成海表温度异常降低,使海气耦合不稳定度较弱,从而使El Ni(n)o事件衰减.6~12月份,赤道中东太平洋地区的海洋气候基本态所引起的暖平流较强,较强暖平流造成海表温度异常升高,使海气耦合不稳定度加强,从而使El Ni(n)o事件发展.这样,在年底左右,赤道中东太平洋地区形成海表温度异常的一个极值点,形成El Ni(n)o事件成熟位相.海洋垂直(经向)平均流的季节变化产生的平流的季节变化最(次)强,因此,海洋垂直(经向)平均流是El Ni(n)o事件成熟位相锁定在年底的主(次)要因子.  相似文献   

10.
龙振夏  李崇银 《大气科学》2001,25(2):145-159
利用LASG九层大气环流谱模式及IAP两层大气环流模式,模拟研究了不同持续时间的赤道东太平洋海表温度正异常(海表温度异常的持续时间分别为1月份,1~2月份,1~4月份及1~8月份,其他月份为气候SST)对西太平洋副高的影响。结果表明,尽管海表温度异常的持续时间不同,但其引起的西太平洋副高的异常演变及其分布却十分相似;同时,季风区的异常降水(进而异常潜热释放)随时间的演变及其分布也存在一定的相似性(对应于不同持续时间的赤道东太平洋的海表温度正异常,5月份印度洋至西太平洋地区都表现出赤道辐合带北移偏晚的特征);季风区降水的这种变化同西太平副高的异常是一致的,从而揭示出这两种现象有可能存在着某种联系。结果还表明,导致这种大气响应场对赤道东太平洋海表温度异常持续时间不敏感的一个重要原因是大气内部过程的影响:中纬大气的内部Rossby波源维持了热带地区激发的扰动在中高纬的存在,同时大气内部Rossby波源对赤道太平洋地区的海表温度异常持续时间表现出不敏感性,正是由于这种不敏感性才导致了响应场对赤道太平洋地区海表温度异常持续时间的不敏感性。模拟结果还表明,在夏季赤道东太平洋存在海表温度正异常的情况,尽管大气内部动力过程的作用十分重要,但夏季赤道东太平洋海表温度正异常对夏季西太平洋副高的影响却明显存在,因此,基于赤道太平洋地区海表温度异常的夏季西太平洋副高的可预报性受到赤道东太平洋海表温度正异常及大气内部动力过程的双重影响。模式的依赖性研究表明,模拟结果具有一定的普遍性。  相似文献   

11.
利用1964~1993年NCEP/NCAR再分析风应力资料和中国科学院大气物理研究所发展的14层热带太平洋环流模式(OGCM),对热带太平洋与El Ni~no有关的年际变化进行了研究。首先,分析了西太平洋暖池次表层海温异常(SOTA)与Ni~no 3区海表温度异常(SSTA)的年际变化关系,发现在El Ni~no事件之前,暖池的次表层海温都有明显正异常出现,它的东传导致了El Ni~no的发生,并且SOTA的传播随纬度变化,沿赤道东传,在赤道外西传。然后,选取了20世纪70年代和80年代两次最强的El Ni~no事件讨论了引起这种机制的可能原因———西风异常的作用。最后,对1964~1993所有的El Ni~no年的风场、次表层海温和海表温度的异常进行了综合分析。  相似文献   

12.
太平洋次表层海温年代际变率及其突变特征   总被引:8,自引:2,他引:8  
利用经验正交函数展开和滑动t检验等方法研究了太平洋次表层海温的年代际变率特征。研究表明,太平洋次表层海温在19800年前后从上至下,先后经历了一次显著的年代际突变,而且随深度不同存在着四种不同的空间突变模态,这四种模态的形成与北太平洋海温异常的西南潜沉路径有着密切的联系。从北太平洋窗口区潜沉的年代际信号沿西南路径传播到副热带地区,在温跃层160m上下与西太平洋向东北传播的异常信号汇合。因此,北太平洋沿西南潜沉路径传播的年代际信号对ENSO的影响可能是间接的,而热带西南太平洋则可能扮演更为重要的角色。  相似文献   

13.
本文利用1951—1980年逐季的平均值资料(共120个季)讨论了北方涛动和与其相联系的北太平洋海温与北半球海平面气压场、500hPa位势高度场遥相关的基本结构,并与南方涛动和赤道东太平洋海温的结果进行了对比分析.发现北太平洋Namias海区和加利福尼亚海流区海温的变化与北方涛动具有很密切的联系;北方涛动和这两个海区的海温同北半球中高纬度大气环流特别是PNA型和NAO型环流异常存在明显的遥相关关系;南方涛动和赤道太平洋海温同WP型或NPO型环流异常关系比较密切,而与PNA型和NAO型的关系不如北方涛动和Namias海区及加利福尼亚海流区海温的显著.  相似文献   

14.
Based on the simple ocean data assimilation (SODA) reanalysis dataset from the University of Maryland and the method of Empirical Orthogonal Functions (EOF), the characteristics of interannual and interdecadal variabilities of the equatorial Pacific subsurface oceanic temperature anomaly (SOTA) are captured. The first and second modes of the equatorial Pacific SOTA in the interannual and interdecadal variations are found respectively and the effect of the second mode on the ENSO cycle is discussed. Results show that the first mode of SOTA’s interannual and interdecadal variabilities exhibit a dipole pattern, indicating that the warm and cold temperature anomalies appear simultaneously in the equatorial subsurface Pacific. The second mode shows coherent large-scale temperature anomalies in the equatorial subsurface Pacific, which is a dominant mode in the evolution of ENSO cycle. The temporal series of the second mode has a significant lead correlation with the Ni?o-3.4 index, which can make a precursory prediction signal for ENSO. The function of this prediction factor in SOTA is verified by composite and case analyses.  相似文献   

15.
—Upper ocean thermal data and surface marine observations are used to describe the three-dimensional, basinwide co-evolution of interannual variability in the tropical Pacific climate system. The phase propagation behavior differs greatly from atmosphere to ocean, and from equatorial to off-equatorial and from sea surface to subsurface depths in the ocean. Variations in surface zonal winds and sea surface temperatures (SSTs) exhibit a standing pattern without obvious zonal phase propagation. A nonequilibrium ocean response at subsurface depths is evident, characterized by coherent zonal and meridional propagating anomalies around the tropical North Pacific: eastward on the equator but westward off the equator. Depending on geographic location, there are clear phase relations among various anomaly fields. Surface zonal winds and SSTs in the equatorial region fluctuate approximately in-phase in time, but have phase differences in space. Along the equator, zonal mean thermocline depth (or heat content) anomalies are in nonequilibrium with the zonal wind stress forcing. Variations in SSTs are not in equilibrium either with subsurface thermocline changes in the central and western equatorial Pacific, with the former lagging the latter and displaced to the east. Due to its phase relations to SST and winds, the basinwide temperature anomaly evolution at thermocline depths on an interannual time scale may determine the slow physics of ENSO, and play a central role in initiating and terminating coupled air-sea interaction. This observed basinwide phase propagation of subsurface anomaly patterns can be understood partially as water discharge processes from the western Pacific to the east and further to high latitudes, and partially by the modified delayed oscillator physics. Received: 17 January 1997 / Accepted: 10 March 1998  相似文献   

16.
A depth map (close to that of the thermocline as defined by 20℃) of climatically maximum seatemperature anomaly was created at the subsurface of the tropical Pacific and Indian Ocean, based on which the evolving sea-temperature anomaly at this depth map from 1960 to 2000 was statistically analyzed. It is noted that the evolving sea temperature anomaly at this depth map can be better analyzed than the evolving sea surface one. For example, during the ENSO event in the tropical Pacific, the seatemperature anomaly signals travel counter-clockwise within the range of 10°S-10°N, and while moving, the signals change in intensity or even type. If Dipole is used in the tropical Indian Ocean for analyzing the depth map of maximum sea-temperature anomaly, the sea-temperature anomalies of the eastern and western Indian Oceans would be negatively correlated in statistical sense (Dipole in real physical sense), which is unlike the sea surface temperature anomaly based analysis which demonstrates that the inter-annual positive and negative changes only occur on the gradients of the western and eastern temperature anomalies. Further analysis shows that the development of ENSO and Dipole has a time lag features statistically, with the sea-temperature anomaly in the eastern equatorial Pacific changing earlier (by three months or so). And the linkage between these two changes is a pair of coupled evolving Walker circulations that move reversely in the equatorial Pacific and Indian Oceans.  相似文献   

17.
超强厄尔尼诺事件海洋学特征分析与预测回顾   总被引:3,自引:1,他引:2  
2015/2016年厄尔尼诺事件被认为是一次与1982/1983和1997/1998年相当的超强事件。基于多套再分析数据,比较了此次事件的海洋上层变量主要特征与历史上两次超强事件的异同,并利用热带太平洋混合层热收支方程对主要物理过程进行了定量分析。研究认为,2015/2016年事件前期为异常高海温东传特征,且前期形成了一次弱的中太平洋型暖事件;但后期表现为弱西传特征,在成熟位相转换成东太平洋型强厄尔尼诺。此次事件中伴随着多次西风爆发事件和开尔文波东传,但赤道开尔文波在盛期基本维持在中东太平洋而不继续东传,赤道外罗斯贝波西传特征亦不明显。相比之下,此次事件在发展-成熟期前后的赤道“热容量放电”过程更加明显些。此次事件异常暖中心位置偏西,其主要原因很可能与赤道东太平洋的强东风异常和冷海水上翻,以及纬向洋流异常和次表层温度异常分布偏西有关;东边界冷水入侵,削弱赤道东太平洋海温异常程度,可能是此次事件位置偏西的直接原因。在海洋上层热量收支中,此次事件中温跃层反馈是促进海温升高和位相转换的最关键过程,纬向平流反馈项亦发挥了重要作用,两种过程共同形成了超强的升温幅度和偏西的异常暖海温分布型。中国国家气候中心新一代ENSO预测系统(SEMAP2.0)每年两次的实际会商预测中给出了较为合理的预测,特别是考虑前期海洋变化预报因子信息的统计模型更好地预测出了海温异常的波动演变状况,成为多方法集合(MME)的重要成员。   相似文献   

18.
Heat content anomalies are analyzed to understand subsurface variability on both aparticular focus on the evolving basinwide patterns and oceanic connections between the extratropics and tropics. Various analyses indicate two distinct modes, one interannual and the other decadal, that involve the tropics and the North Pacific subtropical gyre, respectively. Interannual variability is associated with El Niño in the tropics, with a prominent “see-saw” pattern alternately on and off the equator, and in the east and west, respectively. The interannual cycle features a coherent propagation of subsurface signals around the tropical Pacific, eastward along the equator but westward off the equator at 10–15?°N. Decadal signals are dominant in the subtropics and midlatitudes but also have a tropical component that appears to be independent of interannual variations. An oceanic connection can be seen between subsurface anomalies in the midlatitudes, in the subtropics and tropics on decadal time scales. Subsurface thermal anomalies associated with midlatitude decadal variability can propagate through the subtropics into the tropics, which may modulate the intensity of interannual variability in the tropics. For example, in the middle and late 1970s, a significant warm temperature anomaly appeared to penetrate into the western and central tropics at depth, warming the tropical upper ocean and depressing the thermocline. During the development of El Niño, therefore, an extratropically preconditioned subsurface state (e.g., an enhanced positive heat content anomaly) in the western and central tropical Pacific would favor a warmer sea surface temperature anomaly in the eastern equatorial Pacific, potentially increasing the intensity of ocean-atmosphere coupling. These changes in the thermocline structure and possibly in the coupling strength can further alter the very character of tropical air-sea interactions. This may help to explain decadal variability of El Niño evolution in the tropical Pacific as observed in the 1980s. Our subsurface variability analysis presents observational evidence for the detailed space-time structure of decadal oceanic links between the extratropics and the tropics.  相似文献   

19.
After the strong 2015/16 El Ni?o event, cold conditions prevailed in the tropical Pacific with the second-year cooling of the 2017/18 La Ni?a event. Many coupled models failed to predict the cold SST anomalies(SSTAs) in 2017. By using the ERA5 and GODAS(Global Ocean Data Assimilation System) products, atmospheric and oceanic factors were examined that could have been responsible for the second-year cooling, including surface wind and the subsurface thermal state. A time sequence is described to demonstrate how the cold SSTAs were produced in the central-eastern equatorial Pacific in late 2017. Since July 2017, easterly anomalies strengthened in the central Pacific; in the meantime, wind stress divergence anomalies emerged in the far eastern region, which strengthened during the following months and propagated westward, contributing to the development of the second-year cooling in 2017. At the subsurface, weak negative temperature anomalies were accompanied by upwelling in the eastern equatorial Pacific, which provided the cold water source for the sea surface. Thereafter, both the cold anomalies and upwelling were enhanced and extended westward in the centraleastern equatorial Pacific. These changes were associated with the seasonally weakened EUC(the Equatorial Undercurrent) and strengthened SEC(the South Equatorial Current), which favored more cold waters being accumulated in the central-equatorial Pacific. Then, the subsurface cold waters stretched upward with the convergence of the horizontal currents and eventually outcropped to the surface. The subsurface-induced SSTAs acted to induce local coupled air–sea interactions, which generated atmospheric–oceanic anomalies developing and evolving into the second-year cooling in the fall of 2017.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号