首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
重庆市主城区15年来酸雨变化趋势分析   总被引:8,自引:0,他引:8  
本文运用重庆市主城区1993~2007年降水pH值监测资料,分析了重庆市最近15年来酸雨的变化趋势.结果表明,重庆市主城区降水pH值较低,15年来平均pH值介于3.8~4.5之间.重庆市年降水pH值基本呈递增趋势,倾向率达0.23/10a;最近5年的月际变化中,降水酸度夏高冬低,酸雨频率夏低冬高;各季节中,秋季pH值年际变化呈明显的波动状升高的趋势,其余3个季节呈弱波动,升降趋势不明显.重庆市酸雨(pH<5.6)频率较高,各季节的酸雨频率基本在80%以上,且有增大的趋势;各季节中春季呈明显的升高趋势,其余季节略升高或趋势不明显.重庆市较强级别以上强度的酸雨(pH<4.5)频率年际变化幅度较大,介于30~80%之间,变化趋势不明显.重庆市酸雨强度的变化主要受污染源排放量及其它因素的影响.  相似文献   

2.
利用南宫酸雨观测站2006-2009年的酸雨观测资料,统计分析了4年来酸雨时间分布特征,探讨了酸雨的变化规律,并对酸雨与气象要素的关系进行了初步分析.结果显示:酸雨发生频率63%,强酸雨频率28%;降水平均pH值为5.22,降水最小pH值为3.08;酸性降水量比例80%;降水平均K值为94.1 μS/cm,最大K值为529.0 μS/cm.酸雨存在着季节性变化,秋季是酸雨出现频率最多、酸性较强的季节;春季则是酸雨出现频率低的季节.酸雨的形成与风向风速、降水量、降水性质及大雾有关.  相似文献   

3.
利用广宁县国家基本气象站2007-2012年酸雨观测资料,分析广宁县降水pH、K值的状况.结果表明:广宁属于轻酸雨区,6年的年平均pH为5.03,为弱酸雨等级,酸雨年平均pH最低达3.58,最高达6.73;6年的酸雨年平均发生频率为44.7%;强酸雨年平均发生频率为25.4%.6年y值平均为42.8 μS/cm,最大为215.4 μS/cm,最小为7.9 μS/cm;γ值较大,杂质较多,年平均降水pH上升,酸度减小;春、冬季节的降水平均pH分别是4.96、4.75,夏季是5.37,秋季最高5.42; 1-3月酸雨的出现频率较高为50.1%、12月酸雨的出现频率就有12.9%,5-11月酸雨的出现频率相对较低为41.9%;酸雨一般出现在下午到上半夜,16:00-20:00出现最多.另外气候条件对酸雨的形成和强度也有一定的影响.  相似文献   

4.
本文运用重庆市主城区1993~2007年降水pH值监测资料,分析了重庆市最近15年来酸雨的变化趋势。结果表明,重庆市主城区降水pH值较低,15年来平均pH值介于3.8~4.5之间。重庆市年降水pH值基本呈递增趋势,倾向率达0.23/10a;最近5年的月际变化中,降水酸度夏高冬低,酸雨频率夏低冬高;各季节中,秋季pH值年际变化呈明显的波动状升高的趋势,其余3个季节呈弱波动,升降趋势不明显。重庆市酸雨(pH〈5.6)频率较高,各季节的酸雨频率基本在80%以上,且有增大的趋势;各季节中春季呈明显的升高趋势,其余季节略升高或趋势不明显。重庆市较强级别以上强度的酸雨(pH〈4.5)频率年际变化幅度较大,介于30~80%之间,变化趋势不明显。重庆市酸雨强度的变化主要受污染源排放量及其它因素的影响。  相似文献   

5.
该文利用宿迁市沭阳县和泗洪县观测站2007—2010年的酸雨观测数据和气象资料,统计分析了宿迁市酸雨的变化特征,并对比了酸雨pH值与降水量、降水电导率(K值)、酸雨频率变化规律的关系。结果表明:宿迁市5 a来酸雨单次降水pH值最低达3.26 mol·L-1,属强酸雨。5 a来,沭阳县降水平均pH值均达酸雨标准;泗洪县降水平均pH值未达酸雨标准。春秋季降水酸性最强,酸雨频率出现也最多,冬季则降水酸性和酸雨频率最低;地面风向对宿迁酸雨污染也有一定的影响,形成宿迁酸雨的主要是东南风和东北风;宿迁市雨量的大小对酸雨出现百分率影响不大,但对降水酸度有影响,暴雨的酸性最强,其次是大雨。  相似文献   

6.
广州酸雨观测站2008年-2012年酸雨资料分析   总被引:2,自引:0,他引:2  
利用广州酸雨观测站2008年-2012年的酸雨观测数据,分析广州市年、月、季平均酸雨pH值及酸雨发生频率,并对广州市酸雨变化情况进行分析总结,结果表明:五年中广州的年酸雨平均pH值为4.48,年平均发生频率为75.8%.年平均酸雨最大pH值为4.67,年平均酸雨最小pH值为4.22.酸雨发生频率最高是2009年,为95.9%,最低则是2012年,为82.3%.按照酸雨PH值标准划分来看,2008至2010年年平均pH值属于较强酸性降水,而2011至2012年年平均pH值属于弱酸性降水.月平均酸雨最大pH值出现在11月,pH值为4.71,月平均酸雨最小pH值出现在2月,pH值为3.29;而酸雨频率月变化则可以看出6月份酸雨发生频率最高,为90.4%,而10月份酸雨发生频率最低,为44.0%.按季节分析,广州市秋季降水pH值最高,冬季降水pH值最低,秋季出现酸雨频率最小,冬季出现酸雨频率最大.四季轻雾日数与降水pH值呈显著的负相关,与酸雨频率呈显著的正相关.对风速与酸雨平均pH值分析,说明风速增大时,容易造成外来污染物的入侵,使污染加剧,酸雨平均值减小,酸雨频率增大.而雨量的变化对四季酸雨平均pH值有着显著的影响.  相似文献   

7.
福建省区域酸雨特征及成因分析   总被引:3,自引:0,他引:3  
利用2007—2014年福建省邵武、福州、永安和厦门4个气象观测站的酸雨监测资料,统计分析了福建省不同区域酸雨的时空变化和强酸雨变化特征,并对酸雨成因进行了初步探讨。结果表明:2007—2014年福建省降水年平均pH值为4.64—4.97,达中度酸性标准,pH值呈逐年升高的趋势,降水酸度呈逐渐减弱的趋势,强酸雨发生频率呈下降的趋势。邵武和福州地区为酸雨高发区,邵武地区降水酸度最强,酸雨和强酸雨发生频率最高,2011年后两个地区降水酸度均减弱,强酸雨发生频率均降低;厦门和永安地区为轻酸雨区,永安地区全年基本无强酸雨发生,由于两个地区酸雨发生频率增加,累积酸雨量比例增大,2012年后两个地区降水酸度均呈不同程度的增强。福州、厦门和邵武地区月酸雨变化均表现为一定的规律性,冬春季酸雨污染较重,夏季酸雨污染偏轻;永安地区则相反,秋冬季降水呈碱性,春季有轻微的酸雨污染。2007—2014年福建省降水月平均pH值4.50的概率分别为:永安地区0.0%、厦门地区4.2%、福州地区29.2%和邵武地区42.7%,均呈逐年下降的趋势。城市致酸污染物排放、酸性物质的省际输送、地理环境和天气条件是造成福建省区域性酸雨污染的原因。  相似文献   

8.
利用成都地区温江、简阳两个酸雨观测站2006—2017年的历史酸雨观测资料,结合主要大气污染物浓度数据以及降水量、风等地面气象要素,分析成都地区的酸雨变化特征及趋势。研究结果表明:温江站多年平均pH值为4.74,酸雨频率为51.6%,简阳站多年平均pH值为5.64,酸雨频率为27.2%,酸雨频率在地理区域上分布呈现不均一性;降水pH值和电导率(K)季节变化特征显著,降水pH值夏季最高,冬季最低,而降水K值则相反,夏季最小,冬季最大;近年来酸雨年变化有年平均pH值上升、酸雨频率下降和强度减弱趋势特征,年平均K值减小规律明显:温江K值以每年约3.5 μS〖DK〗·cm-1〖DK〗·a-1的速率下降,简阳以每年约3.7 μS〖DK〗·cm-1〖DK〗·a-1的速率下降;降水pH值与大气污染物SO2、NO2的负相关较为明显,相关系数为-0.488,硫氧化物对酸雨污染贡献逐渐减小;降水K值和大气主要污染物有较强的正相关,相关系数为0.657,与PM10、PM2.5相关性好于与SO2、NO2,近地层大气污染颗粒物浓度对降水K值影响较大;降水pH值与降水量级的变化不明显,但降水量越大其K值越小,且随平均风速的增大降水pH值相对偏大而K值偏小。  相似文献   

9.
根据1993—2017年杭州市酸雨及环境气象观测资料统计分析表明,2007年以前杭州降水p H值主要表现为强酸雨或特强酸雨,2007年以后则以弱酸雨或较弱酸雨为主;降水K值在经历2004—2007年的高值后,近几年又下降到90年代水平。酸雨频率呈持续下降趋势,特别是特强酸雨频率在2007年之后维持在低位;冬季和春季是酸雨高发的季节,而夏季相对较低。从近5 a杭州各区、县(市)酸雨频率及p H值来看,各地年均p H基本呈上升趋势;各地(除临安外)酸雨频率均逐年下降。此外,通过降水过程中的p H值分析表明在大雨或暴雨时较容易发生酸雨,连阴雨过程容易出现p H低值;环境空气中SO2、NO2浓度与p H值变化呈负相关,与电导率K值呈正相关。  相似文献   

10.
2007—2008年昆山市酸雨变化特征浅析   总被引:3,自引:0,他引:3       下载免费PDF全文
利用2007年4月至2009年3月昆山市气象站酸雨监测资料和气象观测资料,采用数理统计方法,对昆山酸雨特征进行初步分析。结果表明:近两年昆山酸雨频率均超过80%,年平均降水pH值均低于4.70,为重酸雨区;其中2008年酸雨污染较2007年进一步加剧。酸雨频率季节分布趋势为:秋季大于冬季大于春季大于夏季。酸雨的强度与风向风速、降水量及霾等气象因子均有一定相关性。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

15.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

16.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号