首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
Northern Canadian Wetlands: Net Ecosystem CO2 Exchange and Climatic Change   总被引:3,自引:0,他引:3  
Northern Canadian peatlands represent a long term sink for atmospheric carbon dioxide (CO2), however there is concern they may become a net source of CO2 due to climatic change. Climatic change is expected to result in significant changes in regional hydrology in boreal and subarctic regions of Canada. A hydrologic model predicted a summer water table drop of 0.14 m in northern Canadian fens given an increase in summer temperature and rainfall of 3°C and 1 mm d-1, respectively. Moreover, surface peat temperature increased by 2.3°C. Net ecosystem exchange of CO2 was modelled using these modelled hydrologic and thermal changes with respiration:peat temperature and water table:net ecosystem production relationships developed from measurements at wetlands in northern Sweden and near Churchill, Manitoba. Model results indicate that the net atmospheric CO2 sink function of fens may be enhanced under future 2 × CO2 scenarios, while bogs may become a net source of atmospheric CO2. If the net ecosystem productivity response to the new hydrologic conditions was ignored then the model predicts a decrease in summer carbon storage for all peatland types.  相似文献   

2.
In the boreal forest of continental western Canada, permafrost is restricted toSphagnum-dominated peatlands on which air photo interpretation reveals the occurrence of five types of surface physiography. Concentrated in the northern part of the boreal forest, permafrost is present in peat plateaus with and without collapse scars. In the southern part of the boreal forest, continental bogs dominate, representing ombrotrophic peatlands that have never contained permafrost. In the midboreal zone, internal lawns are present in bogs and in fens. These internal lawns do not presently contain permafrost but did in the recent past, representing degradation of permafrost since the Little Ice Age. Evaluation of the distribution of these peat landforms indicates that today 30% of bogs contain permafrost at the –0.4 °C isotherm and 50% of bogs contain permafrost at the –1.2 °C isotherm, whereas in the past, 30% of bogs contained permafrost at the –1.4 °C isotherm and 50% of bogs contained permafrost at the –2.3 °C isotherm. Although spatial degradation has occurred with a shifting of permafrost northwards in response to warming since the Little Ice Age, permafrost cover has increased in any given area where present-day temperatures are between 0.5 and –3.5 °C.  相似文献   

3.
Northern peatlands play an important role globally in the cycling of C, through the exchange of CO2 with the atmosphere, the emission of CH4, the production and export of dissolved organic carbon (DOC) and the storage of C. Under 2 × CO2 GCM scenarios, most Canadian peatlands will be exposed to increases in mean annual temperature ranging between 2 and 6° C and increases in mean annual precipitation of 0 to 15 %, with the most pronounced changes occurring during the winter. The increase in CO2 uptake by plants, through warmer temperatures and elevated atmospheric CO2, is likely to be offset by increased soil respiration rates in response to warmer soils and lowered water tables. CH4 emissions are likely to decrease in most peatlands because of lowered water tables, except where the peat surface adjusts to fluctuating water tables, and in permafrost, where the collapse of dry plateau and palsa will lead to increase CH4 emission. There likely will be little change in DOC production, but DOC export to water bodies will decrease as runoff decreases. The storage of C in peatlands is sensitive to all C cycle components and is difficult to predict. The challenge is to develop quantitative models capable of making these predictions for different peatlands. We present some qualitative responses, with levels of uncertainty. There will be, however, as much variation in response to climatic change within a peatland as there will be among peatland regions.  相似文献   

4.
Philip Camill 《Climatic change》2005,68(1-2):135-152
Permafrost covers 25% of the land surface in the northern hemisphere, where mean annual ground temperature is less than 0°C. A 1.4–5.8 °C warming by 2100 will likely change the sign of mean annual air and ground temperatures over much of the zones of sporadic and discontinuous permafrost in the northern hemisphere, causing widespread permafrost thaw. In this study, I examined rates of discontinuous permafrost thaw in the boreal peatlands of northern Manitoba, Canada, using a combination of tree-ring analyses to document thaw rates from 1941–1991 and direct measurements of permanent benchmarks established in 1995 and resurveyed in 2002. I used instrumented records of mean annual and seasonal air temperatures, mean winter snow depth, and duration of continuous snow pack from climate stations across northern Manitoba to analyze temporal and spatial trends in these variables and their potential impacts on thaw. Permafrost thaw in central Canadian peatlands has accelerated significantly since 1950, concurrent with a significant, late-20th-century average climate warming of +1.32 °C in this region. There were strong seasonal differences in warming in northern Manitoba, with highest rates of warming during winter (+1.39 °C to +1.66 °C) and spring (+0.56 °C to +0.78 °C) at southern climate stations where permafrost thaw was most rapid. Projecting current warming trends to year 2100, I show that trends for north-central Canada are in good agreement with general circulation models, which suggest a 4–8 °C warming at high latitudes. This magnitude of warming will begin to eliminate most of the present range of sporadic and discontinuous permafrost in central Canada by 2100.  相似文献   

5.
New data on the diurnal variability of methane emission in summer (2013-2014) from West Siberia peatland ecosystems are presented. It is demonstrated that diurnal variations in methane emission differ much depending on a peatland ecosystem under study. Diurnal variations in methane emission in the fens and hollows of the ridge-hollow complex (RHC) are revealed as well as their reproducibility in 2013-2014. The maximum emission is registered in the daytime, and the minimum is observed at night. There is no diurnal variation in methane emission in ryams (pine bogs) and ridges of RHC. It is revealed that in the upper layer of peat (at the depth up to 10 cm for hollows and at the depth of 2 and 5 cm for fens) the contribution of temperature variability to methane emission variations in fens and hollows is 15-20%. The multiple linear regression with peat temperature at several depths allows explaining 44-54% of the variability of methane flux from peatlands. No significant correlation between methane fluxes and the temperature of peat and air was identified in the diurnal cycle in ryams and ridges.  相似文献   

6.
Abstract

A hydraulic parametrization is developed for peatland environments in the Canadian Land Surface Scheme (CLASS). Three ‐wetland soil classes account for the typical variation in the hydraulic characteristics of the uppermost 0.5 m of organic soils. Review of the literature reveals that saturated hydraulic conductivity varies from a median of 1.0 × 10?7m/s in deeply humified sapric peat to 2.8 × 10?4 m/s in relatively undecomposed fibric peat. Average pore volume fraction ranges from 0.83 to 0.93. Parameters have been designed for the soil moisture characteristic curves for fibric, hemic and sapric peat using the Campbell (1974) equation employed in CLASS, and the van Genuchten (1980) formulation. There is little difference in modelled soil moisture between the two formulations within the range of conditions normally found in peatlands. Validation of modelled water table depth and peat temperature is performed for a fen in northern Québec and a bog in north‐central Minnesota. The new parametrization results in a more realistic simulation of these variables in peatlands than the previous version of CLASS, in which unrealistic mineral soil “equivalents “ were used for wetland soil climate modelling.  相似文献   

7.
The developmental history of peatland and dry land vegetation within the Ob-Vasugan watershed of Western Siberia was characterized according to features of the plant communities and climatic changes which were revealed by stratigraphic, spore-pollen and C14 (carbon) data obtained from a vertical peat profile Vodorasdel. Changes in the paleoecological environment over the last 10000 years were divided into five periods. The climate was characterized in the Holocene according to these periods. At the watershed studied, peatland-forming processes started about 9510 years ago resulting in 550 cm of peat accumulation. The rate of peat accumulation within the watershed decreased over time from 1.9–0.3 mm year– 1.  相似文献   

8.
Orbital forcing of the climate system is clearly shown in the Earths record of glacial–interglacial cycles, but the mechanism underlying this forcing is poorly understood. Traditional Milankovitch theory suggests that these cycles are driven by changes in high latitude summer insolation, yet this forcing is dominated by precession, and cannot account for the importance of obliquity in the Ice Age record. Here, we investigate an alternative forcing based on the latitudinal insolation gradient (LIG), which is dominated by both obliquity (in summer) and precession (in winter). The insolation gradient acts on the climate system through differential solar heating, which creates the Earths latitudinal temperature gradient (LTG) that drives the atmospheric and ocean circulation. A new pollen-based reconstruction of the LTG during the Holocene is used to demonstrate that the LTG may be much more sensitive to changes in the LIG than previously thought. From this, it is shown how LIG forcing of the LTG may help explain the propagation of orbital signatures throughout the climate system, including the Monsoon, Arctic Oscillation and ocean circulation. These relationships are validated over the last (Eemian) Interglacial, which occurred under a different orbital configuration to the Holocene. We conclude that LIG forcing of the LTG explains many criticisms of classic Milankovitch theory, while being poorly represented in climate models.  相似文献   

9.
The climate history of western Spitsbergen, Svalbard is deduced from variations of glaciers during the last 20 000 years. A major depression of the regional equilibrium line altitude (ELA) occurred during the Late Weichselian glacial maximum (18000–13000y ago) when low summer temperatures may have caused year-round snow accumulation on the ground. This rapid expansion of the glaciers also indicates nearby moisture sources, suggesting partly open conditions in the Norwegian Sea during the summers. A rapid glacial retreat around 13 000–12 500 y BP was caused by a sudden warming. During the Younger Dryas the ELA along the extreme western coast of Spitsbergen was not significantly lower than at present. In contrast to Fennoscandia, the British Isles and the Alps, there is no evidence for readvance of local glaciers during Younger Dryas on western Spitsbergen. This difference is attributed to a much dryer climate on Spitsbergen and probably only slight changes in sea surface temperatures. In addition, summer melting in this high arctic area is more sensitive to orbitally increased insolation. Around 10 000 y BP another rapid warming occurred and during early and mid Holocene the summer temperatures were significantly higher than at present. A temperature decline during the late Holocene caused regrowth of the glaciers which reached their maximum Holocene position during the last century.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   

10.
The Effects of Lake Breezes On Weather–Manitoba (ELBOW-MB) field project, conducted around Lakes Manitoba and Winnipeg in July 2013, was the first in-depth field study of lake breezes in Manitoba, Canada. Using observational data collected during ELBOW-MB and output from the 2.5?km Canadian High Resolution Deterministic Prediction System (HRDPS), comparisons were made between HRDPS output and observational data to determine whether the HRDPS can simulate Manitoba lake breezes. The model comparisons considered various lake-breeze characteristics, such as depth, inland penetration distance, and initiation and dissipation time. In addition, cross-sections of lake-breeze circulations were analyzed. The results show that the HRDPS was able to correctly simulate lake breezes, or lack thereof, in 78% of cases on Lake Winnipeg and 68% of cases on Lake Manitoba. Modelled lake-breeze initiation and dissipation times were found to be too early in some cases and too late in others when compared with observations. Overall, it was found that the HRDPS was able to simulate most aspects of lake breezes, although inland penetration distance was one characteristic that the HRDPS was not able to simulate realistically.  相似文献   

11.
Changes in lake levels during the last 12000 years in eastern North America show spatially coherent patterns, implying climatic control. Conditions were generally wetter than today during the late glacial, becoming more arid towards 6000 years BP when most lakes were low. Lakes rose after 6000 years BP, reaching modern levels by about 3000 years BP. These palaeohydrological changes broadly agree with simulated changes in moisture balance derived from experiments with the NCAR Community Climate Model (Kutzbach and Guetter 1986) with changing orbital parameters and lower boundary conditions (sea-surface temperature and ice extent). However, the model simulates maximum aridity at 9000 years BP. Data and model show broadly similar spatial patterns, implying that the lake-level changes can be explained by the changing boundary conditions and their effects on atmospheric circulation. At 12000 years BP most lakes were high because of increased precipitation along the jet-stream storm-track south of the ice sheet. By 9000 years BP, with the much reduced ice sheet, many lakes along the eastern seaboard and in the southeast were lower than present because of greater evaporation due to high summer insolation. The warming of the continental interior generated an enhanced monsoon low in the southwest, causing increased southerly flow which helped to maintain higher lakes in the Midwest. Dry conditions spread eastwards across the Midwest between 9000 and 6000 years BP. This effect is not shown by the model, which continues to bring monsoonal precipitation into the Midwest while simulating enhanced westerly flow and drier conditions further to the west. Such displacements of circulation features are unimportant at the continental scale, but could be significant if general circulation models are used for regionalscale predictions of changes in the moisture balance.  相似文献   

12.
Canada??s IPY program funded seven marine projects spanning the North American Arctic. Work embraced oceanography, air-sea interactions, storm response, paleo-climate and trace-element chemistry. Notable findings are emerging. Conditions in the Beaufort were unusual in 2007, with very high air pressure bringing strong winds, rapid ice drift, thin winter ice, enhanced shelf-break upwelling and a maximum in freshwater retention in the Beaufort Gyre. A mapping of trace chemicals suggests that Arctic mid-depth circulation may also have reversed. Study of Canadian Arctic through-flow revealed a net annual seawater export of 44,000 cubic kilometres from the Arctic to Baffin Bay. Observations of sea ice, sustained through the IPY, affirmed that ice cover is the key attribute of Arctic seas, with wind as a potent agent in its variation. Surveys have shown that the anthropogenic decline in seawater alkalinity is aggravated in the Arctic by low temperature and low salinity resulting from ice melt. Careful experiments have revealed that Arctic phytoplankton growth is constrained by scarcity of dissolved iron where light levels are low. A manganese fingerprint in sediments has tracked changing sea level during the Ice Age. Sediment-core analysis has revealed the Arctic Oscillation as a dominant cause of long-period climate variations during the Holocene. One project has demonstrated how multi-tasked vessels can maintain a watch on Canada??s Arctic within a reliable affordable logistic framework, while a wave forecast model developed by another for the Beaufort is suitable for operational use.  相似文献   

13.
Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.  相似文献   

14.
The paper describes the environmental and climatic changes which took place in Africa from the late Pleistocene through the Holocene and the general atmospheric circulation patterns which likely correspond to them. Three major periods are considered: (1) a period of aridity and dune building c. 20,000-12,000 B.P. in which the Sahara advanced considerably southward; (2) a moist, lacustrine period c. 10,000-8,000 B.P.; and (3) a second moist, lacustrine period toward c. 6,500-4,500 B.P. in which the entire Sahara desert contracted considerably. The prevailing atmospheric circulation patterns are theorized on the basis of corresponding changes of surface boundary conditions-primarily changing thermal character—and known dynamic behavior of the atmosphere.  相似文献   

15.
We report fossil coral records from the Seychelles comprising individual time slices of 14–20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990–2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2–5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere–ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean–atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only provides an incomplete picture.  相似文献   

16.
Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for?>?100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater column, wind, and ocean currents in the North Atlantic during the eruptions.  相似文献   

17.
Postglacial fire history has been reconstructed for eastern Canada from charcoal-influx anomalies from 30 sites taken from a lacustrine charcoal database. The reconstruction exhibits coherent patterns of fire occurrence in space and time. The early Holocene is characterised by high fire incidence. There is a major change to much lower occurrence slightly after 8 ka BP. A return to more fire appears after 3 ka BP. This sequence does not fit with the hydro-climatic reconstruction deduced from lake level reconstructions for northeastern North America, which indicates a dry early and mid-Holocene, and a wet late-Holocene. Fire occurrence however closely matches summer relative humidity inferred from δ18O. The differences between fire frequency and lake level history, are due to changes in the seasonality of precipitation and drought frequency. Lake levels are essentially controlled by winter precipitation while summer precipitation controls fire occurrence. The early Holocene before 8–7.5 ka BP experienced dry summers due to higher solar radiation and dry adiabatic winds from the residual Laurentide Ice Sheet. The middle Holocene was dominated by wet summers due to stability of the Atlantic air mass over eastern Canada. After 2.5 ka BP, summers became drier, albeit not as fire-conducive as during the early Holocene. Late-Holocene summers conducive to fire are explained by more frequent incursions of dry Cool Pacific or Cold Arctic air masses over eastern Canada. Received: 25 January 1999 / Accepted: 14 December 1999  相似文献   

18.
A pilot study to measure methane flux using eddy correlation sensors was conducted in a peatland ecosystem in north central Minnesota. A prototype tunable diode laser spectrometer system was employed to measure the fluctuations in methane concentration.The logarithmic cospectrum of methane concentration and vertical wind velocity fluctuations under moderately unstable conditions had a peak nearf = 0.10 (wheref is the nondimensional frequency) and was quite similar to the cospectra of water vapor and sensible heat. Daytime methane flux during the first two weeks of August ranged from 120 to 270 mg m-2 day-1. The temporal variation in methane fluxes was consistent with changes in peat temperature and water table elevation. Our results compared well with the range of values obtained in previous studies in Minnesota peatlands.These field observations demonstrate the utility of the micrometeorological eddy correlation technique for measuring surface fluxes of methane. The current state-of-the-art in tunable diode laser spectroscopy makes this approach practical for use in key ecosystems.Published as Paper No. 9556, Journal Series, Nebraska Agricultural Research Division.  相似文献   

19.
Tree-ring reconstructed summer Palmer Drought Severity Indices (PDSI) are used to identify decadal droughts more severe and prolonged than any witnessed during the instrumental period. These “megadroughts” are identified at two spatial scales, the North American continental scale (exclusive of Alaska and boreal Canada) and at the sub-continental scale over western North America. Intense decadal droughts have had significant environmental and socioeconomic impacts, as is illustrated with historical information. Only one prolonged continent-wide megadrought during the past 500 years exceeded the decadal droughts witnessed during the instrumental period, but three megadroughts occurred over the western sector of North America from a.d. 1300 to 1900. The early 20th century pluvial appears to have been unmatched at either the continental or sub-continental scale during the past 500 to 700 years. The decadal droughts of the 20th century, and the reconstructed megadroughts during the six previous centuries, all covered large sectors of western North America and in some cases extended into the eastern United States. All of these persistent decadal droughts included shorter duration cells of regional drought (sub-decadal  ≈  6 years), most of which resemble the regional patterns of drought identified with monthly and annual data during the 20th century. These well-known regional drought patterns are also characterized by unique monthly precipitation climatologies. Intense sub-decadal drought shifted among these drought regions during the modern and reconstructed multi-year droughts, which prolonged large-scale drought and resulted in the regimes of megadrought.  相似文献   

20.
Sea ice induced changes in ocean circulation during the Eemian   总被引:1,自引:1,他引:0  
We argue that Arctic sea ice played an important role during early stages of the last glacial inception. Two simulations of the Institut Pierre Simon Laplace coupled model 4 are analyzed, one for the time of maximum high latitude summer insolation during the last interglacial, the Eemian, and a second one for the subsequent summer insolation minimum, at the last glacial inception. During the inception, increased Arctic freshwater export by sea ice shuts down Labrador Sea convection and weakens overturning circulation and oceanic heat transport by 27 and 15%, respectively. A positive feedback of the Atlantic subpolar gyre enhances the initial freshening by sea ice. The reorganization of the subpolar surface circulation, however, makes the Atlantic inflow more saline and thereby maintains deep convection in the Nordic Seas. These results highlight the importance of an accurate representation of dynamic sea ice for the study of past and future climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号