首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
With the implementation of the Chinese Natural Forest Conservation Program (NFCP) in 1998, over millions of hectares of forest in northeastern China have been protected through natural restoration (closure of hills). The impact of this program on the carbon budget of soil has not been evaluated until now. This paper presents results from a 6-year study of total CO2 efflux from both soil and litter (R total), CO2 flux from soil (R soil), soil organic matter (SOM), soil microbe density, and litter input and root biomass at an uncut larch (Larix gmelinii) forest and at a natural restoration site. The natural restoration area is a clear-cut site that was formerly part of a continuous portion of the uncut larch forest. Our objectives were to: (1) quantify the magnitude of CO2 efflux from typical sites in northeastern China; (2) explore the changes in thermal conditions, SOM, and annual CO2 flux during the 6-year natural restoration, and (3) evaluate the impact of NFCP on soil carbon processes. The annual R soil at the clear-cut site (58.6–68.2 mol m???2 year???1) was 113.6–228.4% (mean 141.5%) higher than that at the uncut larch site (29.6–58.4 mol m???2 year???1). At the same time, annual CO2 from litter at the clear-cut site (2.0–14.2 mol m???2 year???1) was only 23.5–84.5% (mean 52.5%) of that at the uncut larch site (5.4–16.8 mol m???2 year???1). SOM at the surface layer of the clear-cut site was 75% of that at the uncut larch site, but the soil microbial biomass (carbon) at the clear-cut site was much higher than that at the larch site (p?<?0.05). The percentage of bacteria, fungi and actinomycetes also were largely different between both sites. Natural restoration at the clear-cut site strongly affected thermal conditions. Although the soil temperature (T soil) and effective accumulated $T_{\rm soil} > 0^{\circ}$ C at the clear-cut site was much higher, the temperature sensitivity (Q 10) was much lower than that at the uncut larch site, and their differences decreased linearly from 2001 to 2006 (p?<?0.05). Moreover, Q 10 at the clear-cut site significantly increased with the progress of natural restoration, which diminished the Q 10 difference between the two sites (slope?=???0.2792, r 2?=?0.4744, p?<?0.05). These data imply that the NFCP natural restoration process has positively recovered the thermal condition of the clear-cut site to the level of uncut larch forest during the 6-year period. However, linear regression analysis showed that the 6-year natural restoration only slightly affected the annual soil CO2 efflux and SOM at both sites, and also did not diminish the differences between the two sites (p?>?0.10), indicating that a much longer time is necessary to restore the soil carbon in the clear-cut site.  相似文献   

2.
The photochemical activation of chlorine by dissolved iron in artificial sea-salt aerosol droplets and by highly dispersed iron oxide (Fe2O3) aerosol particles (mainly hematite, specific surface ~150 m2 g?1) exposed to gaseous HCl, was investigated in humidified air in a Teflon simulation chamber. Employing the radical-clock technique, we quantified the production of gaseous atomic chlorine (Cl) from the irradiated aerosol. When the salt aerosol contained Fe2O3 at pH 6, no significant Cl production was observed, even if the dissolution of iron was forced by “weathering” (repeatedly freezing and thawing for five times). Adjusting the pH in the stock suspension to 2.6, 2.2, and 1.9 and equilibrating for one week resulted in a quantifiable amount of dissolved iron (0.03, 0.2, and 0.6 mmol L?1, respectively) and in gaseous Cl production rates of ~1.6, 6, and 8?×?1021 atoms cm?2 h?1, respectively. In a further series of experiments, the pure Fe2O3 aerosol was exposed to various levels of gaseous hydrogen chloride (HCl). The resulting Cl production rates ranged from 8?×?1020 Cl atoms cm?2 h?1 (at ~4 ppb HCl) to 5?×?1022 Cl atoms cm?2 h?1 (at ~350 ppb HCl) and confirmed the uptake and conversion of HCl to atomic Cl (at HCl to Cl conversion yields of 2–5 %, depending on the relative humidity). The Fe2O3 experiments indicate that iron-induced Cl formation may be important for highly soluble combustion-aerosol particles in marine environments in the presence of gaseous HCl.  相似文献   

3.
Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10?13 cm3 molecule?1 s?1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10?13 cm3 molecule?1 s?1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/? 0.8 nmol m?2 d?1 for CH2I2 and 3.7 +/? 0.8 nmol m?2 d?1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2–4 × 10?13 cm3 molecule?1 s?1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.  相似文献   

4.
This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (τ) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (ΔSWA), wv (ΔSWwv), and aerosols (ΔSWτ) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as ?100 Wm?2 (?18%). The seasonal change of A produces an increase of SW by up to +25 Wm?2 (+4.5%). The annual mean radiative effect is estimated to be ?(21–22) Wm?2 for wv, and +(2–3) Wm?2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ΔSWwv by 0.93 Wm?2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by ?0.027, with a corresponding decrease in ΔSWA by 0.41 Wm?2 (?14.9%). Atmospheric aerosols produce a reduction of SW as low as ?32 Wm?2 (?6.7%). The instantaneous aerosol radiative forcing (RFτ) reaches values of ?28 Wm?2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEτ) for solar zenith angles between 55° and 70° is estimated to be (?120.6 ± 4.3) for 0.1 < A < 0.2, and (?41.2 ± 1.6) Wm?2 for 0.5 < A < 0.6.  相似文献   

5.
Beijing is one of the largest and most densely populated cities in China. PM2.5 (fine particulates with aerodynamic diameters less than 2.5 μm) pollution has been a serious problem in Beijing in recent years. To study the temporal and spatial variations in the chemical components of PM2.5 and to discuss the formation mechanisms of secondary particles, SO2, NO2, PM2.5, and chemical components of PM2.5 were measured at four sites in Beijing, Dingling (DL), Chegongzhuang (CG), Fangshan (FS), and Yufa (YF), over four seasons from 2012 to 2013. Fifteen chemical components, including organic carbon (OC), elemental carbon (EC), K+, NH4 +, NO3 ?, SO4 2?, Cl?, Al, Ca, Fe, Mg, Na, Pb, Si, and Zn, were selected for analysis. Overall, OC, SO4 2?, NO3 ?, and NH4 + were dominant among 15 components, the annual average concentrations of which were 22.62 ± 21.86, 19.39 ± 21.06, 18.89 ± 19.82, and 13.20 ± 12.80 μg·m?3, respectively. Compared with previous studies, the concentrations of NH4 + were significantly higher in this study. In winter, the average concentrations of OC and EC were, respectively, 3 and 2.5 times higher than in summer, a result of coal combustion during winter. The average OC/EC ratios over the four sites were 4.9, 7.0, 8.1, and 8.4 in spring, summer, autumn, and winter, respectively. The annual average [NO3 ?]/[SO4 2?] ratios in DL, CG, FS, and YF were 1.01, 1.25, 1.08, and 1.12, respectively, which were significantly higher than previous studies in Beijing, indicating that the contribution ratio of mobile source increased in recent years in Beijing. Analysis of correlations between temperature and relative humidity and between SOR ([SO4 2?]/([SO4 2?] + [SO2])) and NOR ([NO3 ?]/([NO3 ?] + [NO2])) indicated that gas-phase oxidation reactions were the major formation mechanism of SO4 2? in spring and summer in urban Beijing, whereas slow gas-phase oxidation reactions and heterogeneous reactions both occurred in autumn and winter. NO3 ? was mainly formed through year-round heterogeneous reactions in urban Beijing.  相似文献   

6.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

7.
The chemical compositions (Na+, NH4 +, K+, Mg2+, Ca2+, Cl?, NO2 ?, NO3 ?, SO4 2?, HCO3 ?) of wet precipitation and nitrogen isotope compositions δ15N(NH4 +) were studied from January to December 2010 in Wroc?aw (SW Poland). Results of a principle component analysis show that 82 % of the data variability can be explained by three main factors: 1) F1 (40 %) observed during vegetative season (electrical conductivity, HCO3 ?, NO3 ?, NO2 ?, NH4 + and SO4 2?), mainly controlling rainwater mineralization; 2) F2 (26 %) observed during vegetative and heating seasons (K+, Ca2+ and Mg2+), probably representing a combination of two processes: anthropogenic dusts and fertilizers application in agricultural fields, and 3) F3 (16 %) reported mainly during heating season (Na+ and Cl?) probably indicating the influence of marine aerosols. Variations of δ15N(NH4 +) from ?11.5 to 18.5?‰ identify three main pathways for the formation of NH4 +: 1) equilibrium fractionation between NH3 and NH4 +; 2) kinetic exchange between NH3 and NH4 +; 3) NH4 + exchange between atmospheric salts particles and precipitation. The coupled chemical/statistical analysis and δ15N(NH4 +) approach shows that while fossil fuels burning is the main source of NH4 + in precipitation during the heating season, during the vegetative season NH4 + originates from local sewage irrigation fields in Osobowice or agricultural fertilizers.  相似文献   

8.
PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222?±?87 (range: 48.2–583.8 μg m?3), 25.6?±?14.0 (range: 4.2–82.5 μg m?3), 8.7?±?5.8 (range: 0.8–35.6 μg m?3) and 54.7?±?30.6 μg m?3 (range: 8.4–175.2 μg m?3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m?3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2?=?0.53), summer (R2?=?0.59) and monsoon (R2?=?0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.  相似文献   

9.
The Pacific Atmospheric Sulfur Experiment (PASE) was a field mission that took place aboard the NCAR C-130 airborne laboratory over the equatorial Pacific Ocean near Christmas Island (Kirimati, Republic of Kiribati) during August?CSeptember, 2007. Eddy covariance measurements of the ozone fluxes at various altitudes above the ocean surface, along with simultaneous mapping of the horizontal gradients provided a unique opportunity to observe all of the dynamical components of the ozone budget in this remote marine environment. The results of six daytime and two sunrise flights indicate that vertical transport into the marine boundary layer from above and horizontal advection by the tradewinds are both important source terms, while photochemical destruction consisting of 82% photolysis (leading to OH production), 11% reaction with HO2, and 7% reaction with OH provides the main sink. The overall photochemical lifetime of ozone in the marine boundary layer was found to be 6.5 days. Ocean uptake of ozone was observed to be fairly slow (mean deposition velocity of 0.024?±?0.014 cm s?1) accounting for a diurnally averaged loss rate that was ??30% as large as the net photochemical destruction. From the measurement of deposition velocity an ozone reactivity of ??50 s?1 in seawater is inferred. Due to the unprecedented measurement accuracy of the dynamical budget terms, unobserved photochemistry was able to be deduced, leading to the conclusion that 3.9?±?3.0 ppt (parts per trillion by volume) of NO is present on average in the daytime tropical marine boundary layer, broadly consistent with several previous studies in similar environments. It is estimated, however, that each ppt of BrO hypothetically present would counter each ppt of NO above the requisite 3.9 ppt needed for budget closure. The long-term budget of ozone is further analyzed in the buffer layer, between the boundary layer and free troposphere, and used to derive an entrainment velocity across the trade wind inversion of 0.51 ± 0.38 cm s?1.  相似文献   

10.
Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006–September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51′ N, 24° 52′ W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations. Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO2 and CH4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in relatively fresh European air masses. In air heavily influenced by Saharan dust the O3/CO ratio was as low as 0.13, possibly indicating O3 uptake to dust. Nitrogen oxides (NOx and NOy) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO2 of 9?×?106 molecule cm?3 and 6?×?108 molecule cm?3, respectively. After the primary photolysis source, the most important controls on the HOx budget in this region are IO and BrO chemistry, the abundance of HCHO, and uptake of HOx to aerosol.  相似文献   

11.
Daily rainwater samples collected at Lijiang in 2009 were analyzed for pH, electrical conductivity, major ion (SO4 2?, Cl?, NO3 ?, Na+, Ca2+, Mg2+, and NH4 +) concentrations, and δ18O. The rainwater was alkaline with the volume-weighted mean pH of 6.34 (range: 5.71 to 7.11). Ion concentrations and δ18O during the pre-monsoon period were higher than in the monsoon. Air mass trajectories indicated that water vapor from South Asia was polluted with biomass burning emissions during the pre-monsoon. Precipitation during the monsoon was mainly transported by flow from the Bay of Bengal, and it showed high sea salt ion concentrations. Some precipitation brought by southwest monsoon originated from Burma; it was characterized by low δ18O and low sea salt, indicating that the water vapor from the region was mainly recycled monsoon precipitation. Water vapor from South China contained large quantities of SO4 2?, NO3 ?, and NH4 +. Throughout the study, Ca2+ was the main neutralizing agent. Positive matrix factorization analysis indicated that crustal dust sources contributed the following percentages of the ions Ca2+ 85 %, Mg2+ 75 %, K+ 61 %, NO3 ? 32 % and SO4 2? 21 %. Anthropogenic sources accounted for 79 %, 68 %, and 76 % of the SO4 2?, NO3 ? and NH4 +, respectively; and approximately 93 %, 99 %, and 37 % of the Cl?, Na+, and K+ were from a sea salt source.  相似文献   

12.
The formation of gas-phase products from the reaction of OH radicals with isoprene for low-NOx conditions ([NOx] ≤ 1010 molecule cm?3) has been studied in an atmospheric pressure flow tube (Institute for Tropospheric Research-Laminar Flow Tube, IfT-LFT) operating in the temperature range of 293–343 K and a relative humidity of < 0.5 % up to 50 %. The photolysis of H2O2 or ozone photolysis in the presence of water vapour served as the NOx-free OH radical sources. For dry conditions at 293 K, the measured yields of methyl vinyl ketone (MVK), 0.07?±?0.02, and methacrolein (MACR), 0.12?±?0.04, were in reasonable agreement with literature data. Beside the C4-carbonyls, further product signals have been attributed tentatively to glycolaldehyde, methylglyoxal, hydroxyacetone, 3-methylfuran, C5-hydroperoxyenals (HPALDs) and C5-hydroxy-hydroperoxides. A simplified, “classical” reaction mechanism without efficient HPALD production describes well the observed yield for MVK and MACR. Unexpected high MVK and MACR yields of up to 0.65 in total were measured under conditions of a relative humidity of 50 % using both OH radical sources and two different measurement techniques for organics (proton transfer reaction mass spectrometry and gas chromatography with flame ionization detector). The reaction mechanism applied is not able to describe the strong increase of MVK and MACR yields with increasing water vapour content. The signal attributed to the HPALDs showed a distinct rise of about one order of magnitude increasing the temperature from 293 K to 343 K. A rough estimate leads to a HPALD yield of 0.32 at 343 K with an uncertainty of a factor of two. The results of this study do not support a predominant formation of HPALDs under atmospheric conditions in low-NOx areas. The surprisingly high MVK and MACR yields measured for a relative humidity of 50 % and the formation of glycolaldehyde, methylglyoxal and hydroxyacetone necessitate further research.  相似文献   

13.
The kinetics of hydrogen atom abstraction reactions of HFE-227pc by OH and Cl was studied by ab initio method. The structural optimization and frequency calculation of the titled compound and the species formed during the abstraction reactions were performed with density functional theory using hybrid meta density functional MPWB1K with 6–31?+?G(d,p) basis set. The energy of the species was further refined by making a single point energy calculation at G3B3 level of theory. The standard enthalpies of formation of reactant and the radical formed after H-atom abstraction was calculated using isodesmic method. The rate constants of abstraction reactions were calculated using Conventional Transition State Theory (CTST) and were found to be 1.5?×?10?15 and 0.53?×?10?16 cm3molecule?1 s?1 for OH and Cl respectively. The calculated value for the abstraction by OH is close to the experimental value of 2.26?×?10?15 cm3molecule?1 s?1 whereas the same for Cl is found to be about five times lower than that of 2.70?×?10?16 cm3molecule?1 s?1. The theoretical studies yielded the enthalpies of formation and the rate constants that are vital in determining the lifetime of HFE-227pc.  相似文献   

14.
Measurements of the broadband global solar radiation (R S) and total ultraviolet radiation (the sum of UV-A and UV-B) were conducted from 2005 to 2010 at 9 sites in arid and semi-arid regions of China. These data were used to determine the temporal variability of UV and UV/R S and their dependence on the water vapor content and clearness index. The dependence of UV/R S on aerosol optical depth (AOD) and water vapor content was also investigated. In addition, a simple and efficient empirically model suited for all-weather conditions was developed to estimate UV from R s. The annual average daily UV level in arid and semi-arid areas is 0.61 and 0.59 MJ m?2 d?1, respectively. The highest value (0.66?±?0.25 MJ m?2 d?1) was recorded at an arid area at Linze. The lowest value (0.53?±?0.22 MJ m?2 d?1) was recorded at a semi-arid area at Ansai. The highest daily value of UV radiation was measured in May, whereas the lowest value was measured in December. The monthly variation of the UV/R s ratio ranged from 0.41 in Aksu to 0.35 in Qira. The monthly mean value of UV/R s gradually increased from November and then decreased in August. A small decreasing trend of UV/R s was observed in the arid and semi-arid regions due to recently increasing amounts of fine aerosol. A simple and efficient empirically model suit for all-weather condition was developed to estimate UV from R s. The slope a and intercept b of the regression line between the estimated and measured values were close to 1 and zero, respectively. The relative error between the estimated and measured values was less than 11.5%. Application of the model to data collected from different locations in this region also resulted in reasonable estimates of UV.  相似文献   

15.
The kinetics of the S(IV) oxidation by oxygen in the presence of Mn(II) ions and acetic acid has been studied. Experiments were carried out at 25°C, 3.5?≤?pH?≤?5.0, [S(IV)]≈1?×?10?3 mol/dm3, 1?×?10?6 mol/dm3?≤?[Mn(II)]?≤?1?×?10?5 mol/dm3, 1?×?10?6 mol/dm3?≤?[CH3COOH]?≤?1?×?10?4 mol/dm3. Based on the experimental results, rate constants and orders of the reactions were determined. Depending on the reaction conditions, the observed rate constants for the Mn(II)-catalysed S(IV) oxidation ranged between 3.91?×?10?8 and 8.89?×?10?7 (mol/dm3) s?1, and in the presence of acetic acid they ranged between 2.95?×?10?8 and 7.45?×?10?7 (mol/dm3) s?1. The reaction order in S(IV) was zero for both reactions. The effect of Mn(II) ion and acetic acid concentrations as well as an initial pH of the solution on the S(IV) oxidation rate was discussed. It was found that the rate of the S(IV) oxidation depends on the initial pH of the solution but it is independent of the pH change during the reaction. Acetic acid has a weak inhibiting effect on the Mn(II)-catalysed S(IV) oxidation. Under the experimental conditions the S(IV) oxidation rate decreased no more than twice.  相似文献   

16.

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8?±?5.6, 21.1?±?9.0, 35.4?±?14.2 μg m?3, and 45.2?±?21.3 μg m?3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3?±?3.3, 2.1?±?1.2, 3.3?±?1.5, and 1.6?±?0.8 μg m?3 in PM1, PM1-2.5, PM2.5–10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO42?, NH4+ and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl? mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3? was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4+ and SO42?, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO3–N was lower than NH4–N, the dry deposition flux of NO3–N (35.77?±?24.49 μmol N m?2 d?1) was much higher than that of NH4–N (10.95?±?11.89 μmol N m?2 d?1), mainly due to the larger deposition velocities of NO3–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m?2 d?1, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.

  相似文献   

17.
This paper reports aerosol chemical properties for the first time over a Korean Global Atmosphere Watch (GAW) supersite, Anmyeon (36°32′N; 126° 19′E), during 2003–2004 period. Total suspended Particulates (TSP) showed significant seasonal variation with consistent higher mass concentrations during spring season (average of up to 230?±?190 μg/m3). PM10 also followed similar trend with higher concentrations during spring (average of up to 170?±?130 μg/m3) and showed reduced concentrations during summer. PM2.5 showed a significant increase during summer (average of up to 60?±?25 μg/m3), which could be due to the influx of fine mode sea salt aerosols associated with the Changma front (summer monsoon). Chemical composition analysis showed enhanced presence of acidic fractions, majorly contributed by sulphates (SO 4 2- ) and nitrates (NO 3 - ) in TSP, PM10 and PM2.5 during different seasons. Enhanced presence of Calcium (Ca2+) was observed during sand storm days during spring. The high correlation obtained on matrix analysis between crustal ions and acidic ions suggests that the ionic compositions over the site are mainly contributed by terrestrial sources of similar origin. The neutralization factors has been estimated to find the extend of neutralization of acidicity by main basic components, and found to have higher value for Ammonium (up to 1.1) in different seasons, indicating significant neutralization of acidic components over the region by NH 4 + . Back trajectory analysis has been performed during different seasons to constrain the possible sources of aerosol origin and the results are discussed in detail.  相似文献   

18.

This study presents the chemical composition (carbonaceous and nitrogenous components) of aerosols (PM2.5 and PM10) along with stable isotopic composition (δ13C and δ15N) collected during winter and the summer months of 2015–16 to explore the possible sources of aerosols in megacity Delhi, India. The mean concentrations (mean?±?standard deviation at 1σ) of PM2.5 and PM10 were 223?±?69 µg m?3 and 328?±?65 µg m?3, respectively during winter season whereas the mean concentrations of PM2.5 and PM10 were 147?±?22 µg m?3 and 236?±?61 µg m?3, respectively during summer season. The mean value of δ13C (range: ??26.4 to ??23.4‰) and δ15N (range: 3.3 to 14.4‰) of PM2.5 were ??25.3?±?0.5‰ and 8.9?±?2.1‰, respectively during winter season whereas the mean value of δ13C (range: ??26.7 to ??25.3‰) and δ15N (range: 2.8 to 11.5‰) of PM2.5 were ??26.1?±?0.4‰ and 6.4?±?2.5‰, respectively during the summer season. Comparison of stable C and N isotopic fingerprints of major identical sources suggested that major portion of PM2.5 and PM10 at Delhi were mainly from fossil fuel combustion (FFC), biomass burning (BB) (C-3 and C-4 type vegitation), secondary aerosols (SAs) and road dust (SD). The correlation analysis of δ13C with other C (OC, TC, OC/EC and OC/WSOC) components and δ15N with other N components (TN, NH4+ and NO3?) are also support the source identification of isotopic signatures.

  相似文献   

19.
Aerosol (PM10) samples were collected and its precursor gases, i.e., NH3, NO, NO2, and SO2 measured over Bay of Bengal (BoB) during winter months of December 2008 to January 2009 to understand the relationship between particular matter (PM) and precursor gases. The observations were done under the winter phase of Integrated Campaign on Aerosols, gases and Radiation Budget (W_ICARB). The distribution of water-soluble inorganic ionic composition (WSIC) and its interaction with precursor gases over BoB are reported in present case. Average atmospheric concentration of NH3, NO, NO2, and SO2 were recorded as 4.78?±?1.68, 1.89?±?1.26, 0.31?±?0.14, and 0.80?±?0.30?μg?m?3, whereas WSIC component of PM10, i.e., NH4 +, SO4 2?, NO3 ?, and Cl? were recorded as 1.96?±?1.66, 8.68?±?3.75, 1.92?±?1.75, and 2.48?±?0.78?μg?m?3, respectively. In the present case, abundance of nss-SO4 2? in the particulate matter is recorded as 18?%. It suggests the possibility of long-range transport as well as marine biogenic origin. Higher SO4 2?/(SO2?+?SO4 2?) equivalent molar ratio during the campaign indicates the gas-to-particle conversion with great efficiency over the study region.  相似文献   

20.
Temporal trends in wet deposition of major ions were explored at nationwide remote sites in Japan from April 1991 to March 2009 by using the seasonal Kendall slope estimator and the nonparametric seasonal Kendall test. For the trend analysis, datasets from eight remote sites (Rishiri, Echizenmisaki, Oki, Ogasawara, Shionomisaki, Goto, Yakushima, and Amami) were selected from the Japanese Acid Deposition Survey (JADS) conducted by the Ministry of the Environment. Deposition of H+ has been increasing at remote sites in Japan on a national scale. Significant (p????0.05) increases in H+ deposition were detected with changes of +3?C+9?%?year?1 at seven sites, while insignificant increases were observed at one site. Depositions of non-sea salt (nss)-SO 4 2? and NO 3 ? significantly increased at four and six sites, respectively, with changes of +1?C+3?%?year?1. Significant increases in precipitation at four sites would have contributed to the increase in depositions of H+, nss-SO 4 2? , and NO 3 ? . The emission trends of SO2 and NOx did not corresponded to the deposition trends of nss-SO 4 2? and NO 3 ? . The different trends indicated that temporal variation of precipitation amount trend dominated the deposition trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号