首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study assesses the forecast skill of the Madden–Julian Oscillation (MJO) observed during the period of DYNAMO (Dynamics of the MJO)/CINDY (Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011) field campaign in the GFS (NCEP Global Forecast System), CFSv2 (NCEP Climate Forecast System version 2) and UH (University of Hawaii) models, and revealed their strength and weakness in forecasting initiation and propagation of the MJO. Overall, the models forecast better the successive MJO which follows the preceding event than that with no preceding event (primary MJO). The common modeling problems include too slow eastward propagation, the Maritime Continent barrier and weak intensity. The forecasting skills of MJO major modes reach 13, 25 and 28 days, respectively, in the GFS atmosphere-only model, the CFSv2 and UH coupled models. An equal-weighted multi-model ensemble with the CFSv2 and UH models reaches 36 days. Air–sea coupling plays an important role for initiation and propagation of the MJO and largely accounts for the skill difference between the GFS and CFSv2. A series of forecasting experiments by forcing UH model with persistent, forecasted and observed daily SST further demonstrate that: (1) air–sea coupling extends MJO skill by about 1 week; (2) atmosphere-only forecasts driven by forecasted daily SST have a similar skill as the coupled forecasts, which suggests that if the high-resolution GFS is forced with CFSv2 forecasted daily SST, its forecast skill can be much higher than its current level as forced with persistent SST; (3) atmosphere-only forecasts driven by observed daily SST reaches beyond 40 days. It is also found that the MJO–TC (Tropical Cyclone) interactions have been much better represented in the UH and CFSv2 models than that in the GFS model. Both the CFSv2 and UH coupled models reasonably well capture the development of westerly wind bursts associated with November 2011 MJO and the cyclogenesis of TC05A in the Indian Ocean with a lead time of 2 weeks. However, the high-resolution GFS atmosphere-only model fails to reproduce the November MJO and the genesis of TC05A at 2 weeks’ lead. This result highlights the necessity to get MJO right in order to ensure skillful extended-range TC forecasting.  相似文献   

2.
In this study, we analyzed the dynamical evolution of the ma jor 2012-2013 Northern Hemisphere (NH) stratospheric sudden warming (SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF. The intermittent upward-propagating planetary wave activities beginning in late November 2012 led to a prominent wavenumber-2 disturbance of the polar vortex in early December 2012. However, no major SSW occurred. In mid December 2012, when the polar vortex had not fully recovered, a mixture of persistent wavenumber-1 and -2 planetary waves led to gradual weakening of the polar vortex before the vortex split on 7 January 2013. Evolution of the geopotential height and Eliassen-Palm flux between 500 and 5 hPa indicates that the frequent occurrence of tropospheric ridges over North Pacific and the west coast of North America contributed to the pronounced upward planetary wave activities throughout the troposphere and stratosphere. After mid January 2013, the wavenumber-2 planetary waves became enhanced again within the troposphere, with a deepened trough over East Asia and North America and two ridges between the troughs. The enhanced tropospheric planetary waves may contribute to the long-lasting splitting of the polar vortex in the lower stratosphere. The 2012-2013 SSW shows combined features of both vortex displacement and vortex splitting. Therefore, the anomalies of tropospheric circulation and surface temperature after the 2012-2013 SSW resemble neither vortex-displaced nor vortex-split SSWs, but the combination of all SSWs. The remarkable tropospheric ridge extending from the Bering Sea into the Arctic Ocean together with the resulting deepened East Asian trough may play important roles in bringing cold air from the high Arctic to central North America and northern Eurasia at the surface.  相似文献   

3.
陈文  康丽华 《大气科学》2006,30(5):863-870
利用NCEP/NCAR再分析资料和我国160站月平均气温资料,首先采用线性回归的方法分析了从1958至1998年40个冬季北极涛动(AO)与东亚气候异常的关系.结果表明,当AO处于正位相时,东亚地区200 hPa的急流明显北跳,东亚大槽显著减弱,而在中国的华北、东北到西伯利亚出现大范围的地表南风异常,使得低空从西伯利亚到我国的东北、华北以及韩国、日本有显著的暖异常; 而当AO处于负位相时,则往往出现相反的情形.进一步的相关和合成分析发现,准定常行星波活动可以在AO与东亚气候之间起到桥梁作用.AO可以通过影响中高纬平流层下层的西风强弱,进而影响到准定常行星波的垂直传播,使得对流层下层中高纬地区的行星波振幅发生变化,从而导致低层的西伯利亚高压和阿留申低压同时减弱或增强,最终导致东亚地区异常偏暖或偏冷; 其中低层中高纬地区纬向波数2的扰动对西伯利亚高压和阿留申低压的变化起了最主要的作用.作者提出的AO通过影响准定常行星波的活动而导致东亚气候异常的机理,不但强调了西伯利亚高压的贡献,而且特别从波动的意义上强调了阿留申低压的重要性.文中还讨论了值得进一步研究的有关问题.  相似文献   

4.
This work evaluates the skill of retrospective predictions of the second version of the NCEP Climate Forecast System (CFSv2) for the North Atlantic sea surface temperature (SST) and investigates the influence of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the prediction skill over this region. It is shown that the CFSv2 prediction skill with 0–8 month lead displays a “tripole”-like pattern with areas of higher skills in the high latitude and tropical North Atlantic, surrounding the area of lower skills in the mid-latitude western North Atlantic. This “tripole”-like prediction skill pattern is mainly due to the persistency of SST anomalies (SSTAs), which is related to the influence of ENSO and NAO over the North Atlantic. The influences of ENSO and NAO, and their seasonality, result in the prediction skill in the tropical North Atlantic the highest in spring and the lowest in summer. In CFSv2, the ENSO influence over the North Atlantic is overestimated but the impact of NAO over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North Atlantic. The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream.  相似文献   

5.
The real-time forecasting of monsoon activity over India on extended range time scale (about 3 weeks) is analyzed for the monsoon season of 2012 during June to September (JJAS) by using the outputs from latest (CFSv2 [Climate Forecast System version 2]) and previous version (CFSv1 [Climate Forecast System version 1]) of NCEP coupled modeling system. The skill of monsoon rainfall forecast is found to be much better in CFSv2 than CFSv1. For the country as a whole the correlation coefficient (CC) between weekly observed and forecast rainfall departure was found to be statistically significant (99 % level) at least for 2 weeks (up to 18 days) and also having positive CC during week 3 (days 19–25) in CFSv2. The other skill scores like the mean absolute error (MAE) and the root mean square error (RMSE) also had better performance in CFSv2 compared to that of CFSv1. Over the four homogeneous regions of India the forecast skill is found to be better in CFSv2 with almost all four regions with CC significant at 95 % level up to 2 weeks, whereas the CFSv1 forecast had significant CC only over northwest India during week 1 (days 5–11) forecast. The improvement in CFSv2 was very prominent over central India and northwest India compared to other two regions. On the meteorological subdivision level (India is divided into 36 meteorological subdivisions) the percentage of correct category forecast was found to be much higher than the climatology normal forecast in CFSv2 as well as in CFSv1, with CFSv2 being 8–10 % higher in the category of correct to partially correct (one category out) forecast compared to that in CFSv1. Thus, it is concluded that the latest version of CFS coupled model has higher skill in predicting Indian monsoon rainfall on extended range time scale up to about 25 days.  相似文献   

6.
A 15 member ensemble of 20th century simulations using the ECHAM4–T42 atmospheric GCM is utilized to investigate the potential predictability of interannual variations of seasonal rainfall over Africa. Common boundary conditions are the global sea surface temperatures (SST) and sea ice extent. A canonical correlation analysis (CCA) between observed and ensemble mean ECHAM4 precipitation over Africa is applied in order to identify the most predictable anomaly patterns of precipitation and the related SST anomalies. The CCA is then used to formulate a re-calibration approach similar to model output statistics (MOS) and to derive precipitation forecasts over Africa. Predictand is the climate research unit (CRU) gridded precipitation over Africa. As predictor we use observed SST anomalies, ensemble mean precipitation over Africa and a combined vector of mean sea level pressure, streamfunction and velocity potential at 850 hPa. The different forecast approaches are compared. Most skill for African precipitation forecasts is provided by tropical Atlantic (Gulf of Guinea) SST anomalies which mainly affect rainfall over the Guinean coast and Sahel. The El Niño/Southern Oscillation (ENSO) influences southern and East Africa, however with a lower skill. Indian Ocean SST anomalies, partly independent from ENSO, have an impact particularly on East Africa. As suggested by the large agreement between the simulated and observed precipitation, the ECHAM4 rainfall provides a skillful predictor for CRU precipitation over Africa. However, MOS re-calibration is needed in order to provide skillful forecasts. Forecasts using MOS re-calibrated model precipitation are at least as skillful as forecast using dynamical variables from the model or instantaneous SST. In many cases, MOS re-calibrated precipitation forecasts provide more skill. However, differences are not systematic for all regions and seasons, and often small.  相似文献   

7.
This study focuses on model predictive skill with respect to stratospheric sudden warming(SSW) events by comparing the hindcast results of BCC_CSM1.1(m) with those of the ECMWF's model under the sub-seasonal to seasonal prediction project of the World Weather Research Program and World Climate Research Program. When the hindcasts are initiated less than two weeks before SSW onset, BCC_CSM and ECMWF show comparable predictive skill in terms of the temporal evolution of the stratospheric circumpolar westerlies and polar temperature up to 30 days after SSW onset. However, with earlier hindcast initialization, the predictive skill of BCC_CSM gradually decreases, and the reproduced maximum circulation anomalies in the hindcasts initiated four weeks before SSW onset replicate only 10% of the circulation anomaly intensities in observations. The earliest successful prediction of the breakdown of the stratospheric polar vortex accompanying SSW onset for BCC_CSM(ECMWF) is the hindcast initiated two(three) weeks earlier. The predictive skills of both models during SSW winters are always higher than that during non-SSW winters, in relation to the successfully captured tropospheric precursors and the associated upward propagation of planetary waves by the model initializations. To narrow the gap in SSW predictive skill between BCC_CSM and ECMWF, ensemble forecasts and error corrections are performed with BCC_CSM. The SSW predictive skill in the ensemble hindcasts and the error corrections are improved compared with the previous control forecasts.  相似文献   

8.
Diagnostic evaluations of the relative performances of CFSv1 and CFSv2 in prediction of monthly anomalies of the ENSO-related Nino3.4 SST index are conducted using the common hindcast period of 1982–2009 for lead times of up to 9 months. CFSv2 outperforms CFSv1 in temporal correlation skill for predictions at moderate to long lead times that traverse the northern spring ENSO predictability barrier (e.g., a forecast for July made in February). However, for predictions during less challenging times of the year (e.g., a forecast for January made in August), CFSv1 has higher correlations than CFSv2. This seeming retrogression is caused by a cold bias in CFSv2 predictions for Nino3.4 SST during 1982–1998, and a warm bias during 1999–2009. Work by others has related this time-conditional bias to changes in the observing system in late 1998 that affected the ocean reanalysis serving as initial conditions for CFSv2. A posteriori correction of these differing biases, and of a similar (but lesser) situation affecting CFSv1, allows for a more realistic evaluation of the relative performances of the two CFS versions. After the dual bias corrections, CFSv2 has slightly better correlation skill than CFSv1 for most months and lead times, with approximately equal skills for forecasts not traversing the ENSO predictability barrier and better skills for most (particularly long-lead) predictions traversing the barrier. The overall difference in correlation skill is not statistically field significant. However, CFSv2 has statistically significantly improved amplitude bias, and visibly better probabilistic reliability, and lacks target month slippage as compared with CFSv1. Together, all of the above improvements result in a highly significantly reduced overall RMSE—the metric most indicative of final accuracy.  相似文献   

9.
Lagged ensembles from the operational Climate Forecast System version 2 (CFSv2) seasonal hindcast dataset are used to assess skill in forecasting interannual variability of the December–February Arctic Oscillation (AO). We find that a small but statistically significant portion of the interannual variance (>20 %) of the wintertime AO can be predicted at leads up to 2 months using lagged ensemble averages. As far as we are aware, this is the first study to demonstrate that an operational model has discernible skill in predicting AO variability on seasonal timescales. We find that the CFS forecast skill is slightly higher when a weighted ensemble is used that rewards forecast runs with the most accurate representations of October Eurasian snow cover extent (SCE), hinting that a stratospheric pathway linking October Eurasian SCE with the AO may be responsible for the model skill. However, further analysis reveals that the CFS is unable to capture many important aspects of this stratospheric mechanism. Model deficiencies identified include: (1) the CFS significantly underestimates the observed variance in October Eurasian SCE, (2) the CFS fails to translate surface pressure anomalies associated with SCE anomalies into vertically propagating waves, and (3) stratospheric AO patterns in the CFS fail to propagate downward through the tropopause to the surface. Thus, alternate boundary forcings are likely contributing to model skill. Improving model deficiencies identified in this study may lead to even more skillful predictions of wintertime AO variability in future versions of the CFS.  相似文献   

10.
2003~2004年冬季平流层爆发性增温动力诊断分析   总被引:4,自引:1,他引:3  
陆春晖  刘毅  陈月娟 《大气科学》2009,33(4):726-736
利用逐日的欧洲中尺度天气预报中心(ECMWF)60层模式资料, 对2003年12月~2004年2月期间发生的一次非典型的爆发性增温中平流层结构的变化过程进行动力学诊断分析。充分利用资料层次高(最高层为0.1 hPa)和垂直分辨率高(垂直方向共60层)的优势, 通过对不同高度等熵面位涡分布的分析, 研究了极涡在平流层爆发性增温(SSW)发生前后的变化发展; 通过对EP通量及其散度的分析, 研究了SSW过程中行星波的变化特点; 通过对剩余环流的分析, 研究了在SSW过程中经圈环流的变化及其对动力过程的影响。得出: (1) 2003/2004年SSW增温过程持续时间长、强度大; (2) 增温最早发生在平流层上层并向下传播, 在10 hPa形成较强东风带后, 上层西风环流迅速恢复, 极涡再度形成, 下层则增温持续; (3) SSW前后行星波活动频繁, 有长时间多次的上传, 且以1波作用为主, 2波对其进行了补充; (4) 在SSW过程前后, 平流层中的剩余环流发生反转, 影响了平流层中、 高纬地区和低纬地区的物质交换以及上下层物质的重新分配。这一系列的工作为今后进一步研究平流层、 对流层交换, 发展完善气候模式打下基础。  相似文献   

11.
本文综述了近年来关于平流层大气动力学及其与对流层大气相互作用动力过程的研究进展,特别是回顾了近年来关于平流层大气环流和行星波动力学、热带平流层大气波动及其与基本气流相互作用、平流层大气环流变异对对流层环流和气候变异的影响及其动力过程、平流层大气数值模拟以及在全球变暖背景下平流层大气的长期演变趋势预估等的研究进展。最近的研究揭示了大气准定常行星波传播波导的振荡现象、重力波在热带平流层准两年振荡和全球物质输送中的作用、平流层长期的变冷趋势变化、平流层在对流层天气和气候变化中的作用等现象,表明了平流层大气动力学研究的重要性。平流层大气动力学的深入研究,以及对数值模式中平流层模拟性能的提高,最终都会推动整个大气科学和气候变化研究的进一步发展。  相似文献   

12.
Seasonal probability forecasts produced with numerical dynamics on supercomputers offer great potential value in managing risk and opportunity created by seasonal variability. The skill and reliability of contemporary forecast systems can be increased by calibration methods that use the historical performance of the forecast system to improve the ongoing real-time forecasts. Two calibration methods are applied to seasonal surface temperature forecasts of the US National Weather Service, the European Centre for Medium Range Weather Forecasts, and to a World Climate Service multi-model ensemble created by combining those two forecasts with Bayesian methods. As expected, the multi-model is somewhat more skillful and more reliable than the original models taken alone. The potential value of the multimodel in decision making is illustrated with the profits achieved in simulated trading of a weather derivative. In addition to examining the seasonal models, the article demonstrates that calibrated probability forecasts of weekly average temperatures for leads of 2–4 weeks are also skillful and reliable. The conversion of ensemble forecasts into probability distributions of impact variables is illustrated with degree days derived from the temperature forecasts. Some issues related to loss of stationarity owing to long-term warming are considered. The main conclusion of the article is that properly calibrated probabilistic forecasts possess sufficient skill and reliability to contribute to effective decisions in government and business activities that are sensitive to intraseasonal and seasonal climate variability.  相似文献   

13.
本文以EOF方法为基础对北半球50 hPa高度月平均距平场进行了分析,指出北半球50 hPa场存在着几种定常的环流型,且它的距平场的EOF展开精度具有相当好的稳定性。另外,北半球50 hPa高度月平均距平场高、中纬之间存在着远远超过α=0.001信度检验的“跷跷板”式振荡。功率谱分析发现,北半球50 hPa环流场有着显著的准2—3年及准4个月振荡周期,赤道平流层QBO现象在高度场上也有清楚的反映。通过与对流层的EOF分析比较得到,500 hPa与50 hPa第一、第二特征向量场有相似的空间分布,但对于EOF展开无论是从拟合精度的稳定性还是收敛性看,平流层都远远优于对流层。  相似文献   

14.
基于南海夏季风季节内振荡的降水延伸预报试验   总被引:3,自引:2,他引:1       下载免费PDF全文
利用代表南海夏季风季节内振荡特征的850 hPa纬向风EOF分解的前两个主成分,定义南海夏季风季节内振荡指数,并利用美国国家环境预测中心第2代气候预报系统 (NCEP Climate Forecast System Version 2, NCEP/CFSv2) 提供的1982—2009年逐日回算预报场计算了南海夏季风季节内振荡指数的预报值,用于我国南方地区持续性强降水的预报试验。试验结果表明:利用南海夏季风季节内振荡实时监测指数与模式直接预报降水量相结合的统计动力延伸预报方法,能够有效提高季节内降水分量的预报效果。同时,该方法能够避免末端数据损失,修正了对模式预报降水直接进行带通滤波而导致的负相关现象,并起到消除模式系统误差的作用。  相似文献   

15.
Using the NCEP-2 reanalysis data in 1979–2015, we analyze variations in the coupled stratosphere–troposphere system and attribute them to the polar vortex oscillation (PVO) and the 11-yr sunspot cycle (SC). Subsequently, influences of PVO and SC on the near-ground temperature and extreme temperatures are diagnosed based on observations at 2419 surface stations in China over the same period. Empirical Orthogonal Function (EOF) analysis of geopotential height (GH) anomalies indicates that the first and second EOF modes together can explain nearly 50% of the total variance and they have different driving sources, active periods, and regions. The first EOF mode mainly represents variation characteristics of the polar vortex, and its active periods appear in late winter. It is found that a weakened polar vortex (larger amplitude in the positive time series of the first mode) corresponds to lower daily mean, minimum, and maximum temperatures and more frequent cold nights and days. This cooling effect mainly occur in northeastern China. The second EOF mode is closely related to the SC, and its major active periods are late autumn and early winter. The results reveal that strong solar activity (larger amplitude in the positive time series of the second mode) leads to cooling effects in northern China through accelerating seasonal transformation of the stratospheric circulation and enhancing intensity of the subtropical westerly jet in the upper troposphere and lower stratosphere. The near-ground temperature is lower than usual, especially for daily mean and minimum temperatures. The number of warm nights and days is significantly reduced, and cold nights and days become more frequent. Therefore, the first and second EOF mode time series of GH anomalies can be used as indices of PVO and solar activity, respectively; and can provide indications of winter cooling processes in China.  相似文献   

16.
The impact of asymmetric thermal forcing associated with land–sea distribution on interdecadal variation in large-scale circulation and blocking was investigated using observations and the coupled model intercomparison project outputs. A land–sea index (LSI) was defined to measure asymmetric zonal thermal forcing; the index changed from a negative to a positive anomaly in the 1980s. In the positive phase of the LSI, the 500 hPa geopotential height decreased in the polar regions and increased in the mid-latitudes. The tropospheric planetary wave activity also became weaker and exerted less easterly forcing on the westerly wind. These circulation changes were favorable for westerly wind acceleration and reduced blocking. In the Atlantic, the duration of blocking decreased by 38 % during the positive LSI phase compared with that during the negative phase; in Europe, the number of blocking persisting for longer than 10 days during the positive LSI phase was only half of the number during the negative phase. The observed surface air temperature anomaly followed a distinctive “cold ocean/warm land” (COWL) pattern, which provided an environment that reduced, or destroyed, the resonance forcing of topography and was unfavorable for the development and persistence of blocking. In turn, the responses of the westerly and blocking could further enhance continental warming, which would strengthen the “cold ocean/warm land” pattern. This positive feedback amplified regional warming in the context of overall global warming.  相似文献   

17.
Daily output from the hindcasts by the NCEP Climate Forecast System version 2(CFSv2) is analyzed to understand CFSv2's skill in forecasting wintertime atmospheric blocking in the Northern Hemisphere.Prediction skills of sector blocking,sector-blocking episodes,and blocking onset/decay are assessed with a focus on the Euro-Atlantic sector(20°W-45°E) and the Pacific sector(160°E-135°W).Features of associated circulation and climate patterns are also examined.The CFSv2 well captures the observed features of longitudinal distribution of blocking activity,but underestimates blocking frequency and intensity and shows a decreasing trend in blocking frequency with increasing forecast lead time.Within 14-day lead time,the Euro-Atlantic sector blocking receives a higher skill than the Pacific sector blocking.Skillful forecast(taking the hit rate of 50%as a criterion) can be obtained up to 9 days in the Euro-Atlantic sector,which is slightly longer than that in the Pacific sector(7 days).The forecast skill of sector-blocking episodes is slightly lower than that of sector blocking in both sectors,and it is slightly higher in the Euro-Atlantic sector than in the Pacific sector.Compared to block onset,the skill for block decay is lower in the Euro-Atlantic sector,slightly higher in the Pacific sector during the early three days but lower after three days in lead time.In both the Euro-Atlantic and the Pacific sectors,a local dipole pattern in 500-hPa geopotential height associated with blocking is well presented in the CFSv2 prediction,but the wave-train like pattern that is far away from the blocking sector can only maintain in the forecast of relative short lead time.The CFSv2 well reproduces the observed characteristics of local temperature and precipitation anomalies associated with blocking.  相似文献   

18.
陈文  魏科 《大气科学进展》2009,26(5):855-863
We investigated the interannual variations of the winter stratospheric polar vortex in this paper. EOF analysis shows that two modes of variability dominate the stratospheric polar vortex on interannual timescales. The leading mode (EOF1) reflects the intensity variation of the polar vortex and is characterized by a geopotential height seesaw between the polar region and the mid-latitudes. The second one (EOF2) exhibits variation in the zonal asymmetric part of the polar vortex, which mainly describes the stationary planetary wave activity. As the strongest interannual variation signal in the atmosphere, the QBO has been shown to influence mainly the strength of the polar vortex. On the other hand, the ENSO cycle, as the strongest interannual variation signal in the ocean, has been shown to be mainly associated with the variation of stationary planetary wave activity in the stratosphere. Possible influences of the stratospheric polar vortex on the tropospheric circulation are also discussed in this paper.  相似文献   

19.
兰晓青  陈文 《大气科学》2013,37(4):863-872
利用NCEP-NCAR 再分析资料分析了2011~2012 年冬季发生在欧亚大陆的一次异常低温严寒事件的大气环流演变过程以及可能的成因。这次低温事件,主要出现在2012 年1 月下旬至2 月上旬,持续大约3 周左右,非常强的低温异常覆盖了几乎整个欧洲以及东亚的西伯利亚、蒙古国和我国东北、华北等地。这次低温事件的演变与对流层北极涛动(AO)由正位相转变为负位相的时间相匹配,意味着AO 可能发挥重要作用。进一步分析表明,前期行星波的异常上传导致平流层发生爆发性增温现象,极夜急流减弱,AO 位相首先在平流层由正变负;在2~3 周左右的时间内,平流层AO 异常信号逐渐下传,使得对流层AO 也转为负位相;随后,乌拉尔山阻塞高压异常发展,极区的冷空气不断向南爆发,先后在东亚和欧洲造成剧烈的降温,导致低温严寒事件。因此,考虑平流层环流的异常可能有助于提高欧亚大陆冬季低温严寒事件的预测能力。  相似文献   

20.
两类极区平流层异常增温的特征及其与850hPa温度的关系   总被引:1,自引:0,他引:1  
采用NCEP/NCAR逐日再分析资料,将冬季极区平流层增温分为两种类型:Ⅰ型和Ⅱ型,并分析了两种类型增温的特征、机制及其与850hPa温度的关系。结果表明,波动强迫的强度和对流层的热量能否向上到达平流层是决定两类平流层异常增温的两个主要因素。Ⅰ型平流层增温期间,对流层也表现出了明显的增温特征,850hPa与平流层温度距平场呈现相当正压结构,极区和中纬度异常表现为反位相的振荡,呈现典型的北极涛动的特征;Ⅱ型平流层异常增温期间,增温异常仅局限在平流层范围内,平流层的中低层与高层呈现反位相的距平分布,850hPa温度距平场呈现无规则的分布特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号