首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
中国西部空中水汽分布结构特征   总被引:2,自引:2,他引:2  
利用1958-1997年月平均NCEP比湿资料研究了中国西部空中水汽分布特征。结果表明:水汽的垂直分布结构非常相似,850hPa以上的水汽分布中心位于青藏高原上空,5-10月水汽含量主要集中在500hPa以下,其中7月的空中水汽含量最丰沛。水汽含量随高度减少,从季节变化来分析,夏季最大、秋季次之、冬季最小。40a的水汽年代际变化表明,夏季空中水汽含量呈现线性下降趋势,特别是20世纪90年代以来更明显;冬季比湿呈线性上升趋势,1月和7月比湿的年代际变化趋势呈反位相特征。  相似文献   

2.
甘肃省空中水汽含量、水汽输送的时空分布特征   总被引:12,自引:2,他引:12       下载免费PDF全文
利用甘肃省各探空站历年的高空资料,通过计算空中水汽含量和水汽通量,对其气候特征、水汽的来源或输送进行分析。结果表明,空中水汽含量和水汽输送夏季较多,冬季较少,南部较多,北部较少;2~7月是水汽含量的增长期,8月至次年1月是递减期;输送水汽的源地主要有孟加拉湾及周边海域、南海和东海海域、青藏高原、四川盆地及周边地区;输送水汽的路径主要有中层西南路径、中低层偏南路径以及东南路径。  相似文献   

3.
利用2000-2009年南昌、赣州两个探空站资料,通过计算大气水汽含量和水汽通量,对江西省空中水汽含量变化、分布、水汽输送等特征进行了分析。结果表明,近10年来,江西省平均大气水汽含量为35.04 kg/m2,水汽含量呈下降趋势。水汽含量夏季丰富,冬季匮乏,2-6月是江西大气中水汽含量主要增长期,最大值出现在8月,最小出现在1月或12月;空间上呈现南多北少分布。水汽输送在春、冬季以纬向输送为主,夏、秋季经向和纬向输送量基本相当。  相似文献   

4.
利用常规观测资料、区域自动站资料、NCEP/NCAR逐6 h再分析资料,对2021年6月28日~7月4日柳州持续性暴雨的环流形势和水汽输送特征进行了分析。结果表明:500 hPa南支槽和副热带高压的对峙导致850 hPa低涡切变稳定少动,为暴雨区建立了稳定、持续的水汽通道;南海夏季风的爆发为暴雨区提供源源不断的水汽,水汽输送大值带主要位于700 hPa以下,以边界层925 hPa水汽辐合最强;从水汽收支看,南边界为主要水汽输入边界,东边界则为水汽主要输出边界,越往高层水汽出流越明显;南边界水汽输入对于区域水汽净流入的贡献主要在700 hPa以下,且越往低层南边界水汽贡献越明显;柳州北部元宝山脉对水汽的流出有一定阻挡作用,925 hPa以下北边界的水汽流出比南边界的流入小一个量级。   相似文献   

5.
根据海河流域测站降水资料、NCEP/NCAR再分析资料和日本气象厅JRA-25资料,分析了1951—2008年夏季海河流域大气水汽含量的变化以及不同环流形势下的水汽输送特征,结果表明:海河流域大气水汽含量存在显著的年代际变化特征,与降水量存在显著统计相关;海河流域上空纬向水汽输送主要发生在850~700 hPa之间,经向水汽输送在850 hPa以下存在强的水汽输送带,它是海河流域水汽的主要贡献者,也是影响海河流域降水的最主要因素之一。气旋型环流和南风型环流对海河流域水汽输送有较大影响。  相似文献   

6.
川渝地区空中水资源分布及水汽输送特征   总被引:3,自引:0,他引:3  
利用NCEP/NCAR全球1948~2003年共56年月平均再分析网格点(2.5°×2.5°)资料,计算并分析了川渝地区(100~110°E,25~35°N)空中水资源的逐年变化特征、时空分布、水汽输送特征、水汽收支状况以及大气可降水能力。结果表明:近56年来,川渝地区整层水汽含量总体是略呈下降趋势,但夏冬两季水汽呈上升态势;区域内水汽含量的水平分布表现为以四川盆地东南部至重庆涪陵为湿中心,自东南向西北逐渐减少的趋势;水汽输送以西南和东南方向为主;全年水汽收支呈现净输入的状态;秋、夏、春三季皆有较大的可降水量,空中潜在水资源丰富。   相似文献   

7.
青海高原近43年夏季水汽分布及演变特征   总被引:11,自引:6,他引:11  
通过对青海高原近43年夏季空中水汽分布及演变的研究,结果表明:(1)夏季来自孟加拉湾的暖湿水汽在东亚夏季风的驱动下向东北方向输送,与沿中纬度的西风环流输送的水汽在青海高原会合,但受高原大地形阻挡,到达该区的水汽含量较源区大大减小;(2)青海高原水汽通量场自西界向东界增加,水汽通量高值区基本分布在青海东部的边坡地带;(3)近43年青海高原净水汽通量收支有正有负,但整体上却呈增加趋势;(4)旱年青海高原水汽通量比平均状况偏少10~40 kg.m-1.s-1;涝年偏多10~20 kg.m-1.s-1;无论旱涝年,青海高原空中净水汽通量均呈正值,但旱年比平均状况偏少21.88%,涝年偏多53.99%。  相似文献   

8.
杨茜  李轲  高阳华 《气象》2010,36(8):100-105
利用1987—2006年重庆及其周边地区11个站的探空资料,通过计算水汽含量、水汽通量等参量,分析了重庆地区上空水汽含量和水汽输送的时空分布特征。结果表明,重庆地区空中水汽含量在夏季最大,冬季最小;南部、西部较多,北部、东部较少。绝大部分的水汽含量集中在500 hPa以下。重庆地区的水汽主要来源自西边界的西风水汽输送和南边界的西南风水汽输送;重庆大部分地区上空的水汽输送多以辐合为主,尤其在重庆西部地区更为明显,进行人工增雨潜力较大。  相似文献   

9.
本文根据南昌、赣州1980~1986年07h与19h探空资料,计算我省空中水汽资源与影响潜力,分析了:(1)江西空中水汽量时空分布特征;(2)空中水汽量昼夜差异变化;(3)空中水汽降出率及变化特征;(4)空中水汽量的影响潜力;(5)临界降水能力与人工增雨机率。  相似文献   

10.
河南省空中水汽资源的来源、分布及收支   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1971-2005年河南省及其临近地区NCEP/NCAR月平均再分析资料和同期降水观测资料,分析了河南省空中水汽来源、水汽资源的时空分布、水汽输送特征以及河南省域水汽收支状况.结果表明:不同季节水汽来源、水汽通量强度及其随高度的分布、水汽通量散度等特征有相当大的差异;河南省空中年水汽含量平均值为25.79 mm,水...  相似文献   

11.
The water vapor in the air over the Hexi Corridor on the northeastern side of the Qilian Mountains and adjacent regions and its transport characteristics were studied using the upper-air and surface data observed in many years. The sources of water vapor and its transport pathways were explored. The results show that: (1) The Qinghai-Tibetan Plateau is a source area of water vapor directly supplied to the Hexi region and the westerly airflow is the main transport of water vapor to the region. (2) The center of the transport intensity of water vapor over the Hexi region occurs near the height of 500 hPa and the maximum daily change of water vapor occurs between 700 and 600 hPa, which is quite different from the changes of water vapor transport and the maximum daily changes of water vapor over the eastern China. (3) During the mid-1960s to the mid-1980s, the moisture content in the air over the Hexi region exhibited a significant decrease trend, but from the mid-1980s to the late 1990s, it tended to increase. Such a variation trend appears to be consistent in winter and spring and is particularly evident in the transition period between winter and spring.  相似文献   

12.
The seasonal and interannual variations of the water vapor content and its mean transfer in the atmosphere over East Gansu are calculated and analyzed by using the NCEP/NCAR global reanalysis grid data (2.5°×2.5°Lat./Lon.) for 55 yr (1948-2002). The results show that 1) the water vapor content within the whole layer atmosphere over East Gansu in the latest 55 yr exhibits decreasing trends except that in winter,which shows a notable increasing trend; 2) the annual average water vapor transport flux mainly comes from southeast and southwest, and decreased from southeast to northwest gradually; 3) on the average, the annual water vapor transport ux over East Gansu increases continuously with height in the lower and middle parts of troposphere, and reaches the maximum value at the layer of 500 hPa; 4) in East Gansu,the southeast and southwest boundaries are the main water vapor import boundaries and the northeast and northwest boundaries are the main water vapor export boundaries. The water vapor import and export quantities in summer months reach the maximum values of those in all months, that is, 886.0 and 754.5 mm, respectively; and 5) the annual water vapor import is 1579.5 mm and its export is 997.6 mm, indicating the import of water vapor is more than the export. The net water vapor import over the whole region is 581.9mm. which accounts for 36.8% of the annual total import. The net water vapor import in winter is 88.0 mm, which accounts for 15.1% of the total import. This value in spring increases obviously, which equals 240.7 mm and accounts for 41.4% of the total. The value in summer equals 131.5 mm and accounts for 22.6% of the total. The net water vapor import in autumn is 121.7 mm and accounts for 20.9% of the total import. It implies that there is a fairish potential water vapor resource that has great potential for arti cial precipitation enhancement over East Gansu Province.  相似文献   

13.
王文波  杨明  王旭  梁倩  封雅琼 《气象科技》2014,42(3):466-473
利用青藏高原中东部地区16个探空站的1979—2008年各标准等压面上的月平均探空资料对青藏高原中东部地区500~200hPa高层水汽冬夏季时空分布特征及变化趋势进行了研究,结果表明:①空间分布上,青藏高原的水汽空间分布冬夏两季呈现出一致明显的西北—东南走向,高原南部水汽年际变化波动较大,北部较稳定;夏冬两季水汽总体呈现一致变化,同时夏季还存在南北向的反相位区域异常变化,冬季则表现为东西向的反相位变化;②时间变化上,青藏高原夏季水汽总体呈现出较弱的上升趋势,1979—1995年水汽有下降趋势,1996—2005年转为增加趋势,突变主要在1997、2006年;冬季水汽总体为弱下降趋势,1979—1984年水汽为下降趋势,1985—2004年增长并保持稳定,突变主要在1986、2005年;同时青藏高原水汽还存在西部水汽增加而东部水汽呈减少趋势的区域变化特征。  相似文献   

14.
利用1983~2011年降水量、环流和海温的再分析资料,探讨了东亚北部地区夏季水汽输送的年代际变化特征,并分析了前冬北大西洋海温对东亚北部地区夏季水汽输送与大气环流的可能影响。研究结果表明,20世纪90年代末期东亚北部地区夏季整层水汽与降水年代际的变化特征相一致,整层水汽通量的年代际变化主要是由于纬向水汽输送异常作用的结果。东亚北部地区(35°~55°N,90°~145°E)西边界的水汽输送通量由多变少,东边界的水汽输送通量由少变多特征则直接导致了该地区降水由偏多转为偏少的年代际变化。就外强迫海温角度来说,前冬北大西洋海温跟东亚北部地区夏季500 hPa高度场、850 hPa风场和850 hPa比湿均显著相关。同时,在20世纪90年代中后期前冬北大西洋海温也表现出由偏低向偏高转变的年代际变化特征,且由于海温自身的记忆性前冬的海温异常一直延续到夏季。并在夏季激发出横跨北大西洋和欧亚大陆中高纬度地区的大西洋-欧亚(AEA)遥相关结构,并进一步影响东亚北部地区夏季水汽输送。  相似文献   

15.
上对流层/下平流层水物质分布与输送特征   总被引:1,自引:0,他引:1  
基于Aura卫星微波临边探测仪(MLS)探测的水汽、冰水含量和温度等资料,对比分析了夏季亚洲季风区与北美季风区、暖池区以及伊朗高原上对流层/下平流层水汽、冰水含量以及水物质总含量(水汽和冰水含量之和)的分布特征,并探讨了不同区域水汽的输送过程。结果表明:在215-83 hPa高度上水物质总含量在亚洲季风区均出现了高值中心,且亚洲季风区水物质总含量明显大于北美季风区;在215 hPa高度水汽对水物质总含量起主要的贡献,而到了147-83 hPa高度,冰水含量与水汽对水物质总含量的贡献大致相当,亚洲季风区上对流层/下平流层水汽的高值中心揭示了反气旋对水汽的隔离作用。水汽混合比在147 hPa和100 hPa高度不同的概率密度分布反映出不同高度影响水汽输送的不同因素。北半球冬季暖池区100 hPa上空温度极低,水汽混合比峰值概率仅为2 ppmv;而在147 hPa高度上,亚洲季风区频繁的深对流使得大量水汽被输送到对流层上层,这是亚洲季风区水汽概率“长尾”分布的主要原因。在100 hPa和147 hPa高度,冰水含量主要集中在小值,可能是由冰晶粒子消耗水汽而增长到一定尺度后沉降造成的。  相似文献   

16.
利用Aura卫星微波临边观测仪(Microwave Limb Sounder,MLS)数据,评估了ERA-I、MERRA、JRA-55、CFSR和NCEP2等5套再分析资料的水汽数据在青藏高原及周边上对流层-下平流层(Upper Troposphere and Lower Stratosphere,UTLS)的质量,然后选取其中质量较好的两套水汽数据,分析它们对青藏高原及周边UTLS水汽的时空分布和演变的表征能力。结果表明,与MLS数据相比,5套再分析资料中在UTLS普遍偏湿,最大偏湿在上对流层215 hPa,约为165%,而在下平流层,ERA-I和MERRA与MLS的差异相对较小。总的来看,ERA-I和MERRA表征的水汽与MLS更为接近。进一步的对比表明,ERA-I和MERRA中青藏高原及周边水汽含量的时空分布与MLS较为接近,夏季能够表征青藏高原在纬向和经向上的水汽高值区,冬季能够表征对流层顶、西风急流中心附近的水汽梯度带,而且MERRA的结果要好于ERA-I。ERA-I、MERRA和MLS中青藏高原地区的水汽季节演变都表现为冬季1-2月水汽含量低,夏季7-8月水汽含量高,水汽的季节变化在200~300 hPa最大。MLS资料显示,在青藏高原地区对流层顶附近,存在随时间向上向极的水汽传输信号。相较而言,ERA-I对向上水汽传输信号的表征更好,而MERRA对下平流层(100 hPa)向极水汽传输信号的表征更好。  相似文献   

17.
中国55年来地面水汽压网格数据集的建立及精度评价   总被引:5,自引:0,他引:5  
对气象要素网格化是气候变化研究中避免空间抽样误差的有效方法之一.文中采用薄盘光滑样条插值法(ANUSPLIN),在考虑站点经度、纬度和海拔高度的基础上,对中国55年来地面水汽压站点资料进行空间插值,得到了中国陆地水汽压年和月平均值1°×1°网格数据集.精度检验表明:中国年水汽压插值误差普遍小于0.3 hPa;而月水汽压的插值误差由于受水汽压周期变化的影响,表现出周期性变化的特点.一般夏季较大,最大误差在0.5 hPa左右,冬季较小,约为0.2 hPa.在考虑站点海拔与对应网格DEM差值大小的基础上,建立实测水汽压值与对应网格水汽压值年序列,并进一步分析二者的相关关系,表明:(1)二者具有很好的相关性,相关系数为0.88-0.96;(2) 能很好地模拟地形影响,得到的网格水汽压可以较好地代表实测水汽压的变化趋势.由此建立了中国近55年来地面水汽压的年序列.其趋势表明:近55年来中国年平均水汽压呈增加趋势,其线性趋势为0.52 hPa/(100 a),其中西部增加趋势大于东部,且以夏季的增大趋势最为显著.结合近50年来气温的变化趋势说明:在中国,气温每增加1 ℃,大气中年平均水汽含量约增加3.15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号