首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 42 毫秒
1.
CLM在淮河流域数值模拟试验   总被引:8,自引:1,他引:8  
黄伟  郭振海  宇如聪 《气象学报》2004,62(6):764-775
文中利用 1998年HUCEX资料对CommonLandModel(CLM )的模拟能力进行了验证。结果表明 ,CLM不但能够较好地模拟陆 气间各种能量通量 ,而且还能模拟出土壤中温度的时空分布特征。春季 ,CLM对潜热模拟偏高 ,从而引起土壤温度模拟偏低 ;而在夏季 ,潜热模拟偏低 ,在旱地下垫面由于净辐射模拟偏低使土壤温度的模拟仍然偏低 ,水田下垫面的土壤温度模拟趋向合理。夏季的水田无论在对大气的能量输送还是土壤的温度分布上 ,都有其特殊性 ,需在陆面模式中予以特殊的考虑。  相似文献   

2.
地表热平衡温度的一种计算方法   总被引:19,自引:1,他引:19       下载免费PDF全文
本文提出了地表热平衡温度的一种计算方法。将土壤分成表层和深层,利用热量守恒原理导出了表层和深层土壤平均温度的预报方程以及地表温度的计算公式。这种方法物理意义明确,计算简单,能够很好地描写地表和土壤温度的日变化现象。並可用来研究不同土壤热力性质、天空状况和近地层大气特性对地表和土壤温度的影响机制。还可用于大气环流和气侯模式,较好地反映陆气或海气的相互作用。 计算结果表明,本文所提出的地表温度计算方法较通常所用的强迫恢复法更合理。我们将它定名为“热量平衡法”。  相似文献   

3.
地气耦合系统中温湿变化的数值模拟   总被引:4,自引:1,他引:4  
钱永甫 《气象学报》1991,49(4):538-547
本文提出了计算地气耦合系统中温度和湿度变化的一维数值模式,在土壤中,利用热量平衡和水份平衡原理计算土壤温度和湿度,在大气中,考虑了长短波辐射、云量和凝结等因素对大气温湿变化的影响。选择一种代表性土壤对模式进行了检验,结果发现,模式能较好地模拟诸多物理量的日变化过程。计算表明,大气和土壤的初始温湿分布,对结果有较大影响。本文的原理可应用于大气环流模式中陆气相互作用过程的参数化。  相似文献   

4.
利用CMIP6 模式模拟的多层土壤温度资料,结合鄂陵湖草地站土壤观测资料和欧洲中心ERA5再分析资料,评估了BCC陆面过程模式对青藏高原土壤冻融过程的模拟能力。结果表明:BCC-CSM2-MR对青藏高原冻融总天数,特别是对于消融过程阶段的模拟接近观测值,但其完全冻结阶段和消融过程阶段的日期都有所推迟,可能与陆面模式物理参数化过程不完善导致土壤温度下降更慢有关。BCC-CSM2-MR 对青藏高原土壤冻结时段前期的冻土深度变化曲线模拟效果最佳,但由于网格分辨率低且对地形刻画不准确,BCC-CSM2-MR 不能模拟出青藏高原西南部相间分布的冻土深度特征。BCC-CSM2-MR 可以模拟青藏高原土壤温度在 1985~2014 年的升高趋势。对于气候倾向率空间分布,BCC-CSM2-MR模拟结果相较于集合平均,在青藏高原东北部偏低而西部偏高,且不能模拟出北部存在的少量相对低值区域。   相似文献   

5.
利用1979-2016年中国区域长时间序列逐日雪深资料,分析了青藏高原积雪深度与积雪日数的分布及变化特征,并将积雪期划分为三个阶段(积累期、鼎盛期和消融期),结合ERA-Interim月平均再分析资料,分析了积雪与地表热状况(气温、地表和土壤温度)和能量输送量(地表净短波辐射、地表净长波辐射、感热通量、潜热通量、地表热通量和土壤热通量)的相关关系,初步探讨了积雪在高原陆面过程中的作用。结果表明:研究时间范围内青藏高原积雪(深度和日数)主要呈减少趋势,仅在黄河源区及高原边缘地区为增加趋势,积雪鼎盛阶段(1-2月)的减少趋势最显著;高原积雪对地表主要起降温作用,深层土壤温度对积雪的响应存在滞后性,积雪的减少抑制了土壤向上的热量输送进而不利于冻土的发育;高原积雪与地表感热和地表热通量主要呈现负相关关系,潜热通量与积雪也呈负相关特征但比感热通量的相关性小。由于ERA-Interim资料对高原积雪深度的描述与本研究使用的卫星遥感积雪深度存在较大偏差(包括空间分布、气候倾向率、年际变化以及绝对大小等),导致本研究中积雪与地表热状况和热通量的相关度不高,需要通过陆面模式模拟做进一步探讨。  相似文献   

6.
为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP试验),使用2010—2018年中国气象局2380个土壤温度观测站点10和40 cm观测数据以及美国全球陆面数据同化系统(The Global Land Data Assimilation System,GLDAS)驱动的Noah模式(GLDAS_Noah试验)模拟的土壤温度结果,从空间分布、季节、分区等角度进行了评估,实现了不同驱动数据相同陆面模式和相同驱动数据不同陆面模式的对比分析。结果表明: GLDAS_Noah、CLDAS_Noah和CLDAS_Noah-MP试验均能合理模拟出中国区域土壤温度空间分布,但在量级上有一定差异,主要表现在中国东北、新疆、青藏高原等积雪区。对于相同陆面模式不同驱动数据,均方根误差显示CLDAS_Noah试验在季节与分区上均优于GLDAS_Noah试验,间接表明CLDAS大气驱动数据优于GLDAS大气驱动数据,且大气驱动数据是提高土壤温度模拟精度的重要因素之一;对于相同驱动数据不同陆面模式,总体上CLDAS_Noah-MP试验棋拟效果优于CLDAS_Noah试验,其中CLDAS_Noah试验模拟的10和40 cm深度土壤温度在冬季积雪区误差明显大于CLDAS_Noah-MP试验,可能与Noah-MP模式改进了积雪方案有关,但10和40 cm深度下CLDAS_Noah-MP试验在东北、华北、青藏高原地区对春季土壤温度模拟误差明显大于CLDAS_Noah试验,可能与Noah-MP模式融雪方案有关。总之,本研究对于后续开展土壤温度多模式集成、土壤温度站点资料同化,最终研制中国区域高质量土壤温度数据集具有一定的参考意义。   相似文献   

7.
基于GLDAS产品的青藏高原土壤湿度特征分析   总被引:1,自引:0,他引:1  
选取青藏高原中部那曲地区10个试验点2010年8月至2012年12月的土壤湿度数据与全球陆面数据同化系统(GLDAS)中4个陆面过程模型(NOAH、CLM、VIC、MOSAIC)模拟得到的土壤水分产品进行对比分析,发现NOAH陆面模式资料在青藏高原适用性较好。采用中国科学院青藏高原研究所那曲站10个试验点观测土壤湿度资料和长时间序列的GLDAS陆面模式资料研究青藏高原地区不同深度土壤湿度的时空分布特征。结果表明:那曲地区土壤湿度呈现显著的季节变化特征,一年之中出现两个峰值和两个低值阶段。基于NOAH陆面数据同化产品发现青藏高原土壤湿度的空间分布呈现明显的纬向分布特征,随纬度的升高,土壤湿度值降低;同时,青藏高原中部浅层土壤和中间层土壤湿度有变湿的趋势。0~10 cm、10~40 cm、40~100 cm土壤湿度EOF展开第一模态(EOF1)在高原北部及南部呈反位相分布。  相似文献   

8.
利用简单的土壤热传导方程建立模型,并结合小波变换方法,分析了2004年6月22日~8月18日金塔绿洲附近观测的戈壁土壤温度序列,重点关注地下10 cm的土壤温度变化.结果表明,在观测时段土壤温度除了有明显的日变化外,还存在周期为准4天和准两周的波动.利用滑动相关分析后发现,太阳向下短波辐射强度与土壤温度日变化能量存在显著的正相关,这与利用土壤热传导模型分析土壤日变化振幅年变化的相关研究的结论一致.太阳向下短波辐射强度与准4天周期波动实部分量在降水前后存在负相关关系.比较观测时段土壤温度准4天波动能量与同时期的天空温度,发现准4天波动可能与持续增强的云逆辐射有关.通过分析降水前后土壤温度、土壤含水量的变化,发现二者的日变化在降水后与降水前相比,振幅增大,位相前移.这一结果可以用土壤热扩散率在一定范围内随土壤含水量增大而增大得到解释.最后利用回归分析发现T10的准两周波动可能与更大范围的大气环流场异常有关.  相似文献   

9.
土壤温度是陆气相互作用以及陆面模式模拟的关键参量,但高分辨率时空连续的土壤温度获取困难,尤其是我国青藏高原地区,融合遥感资料的陆面模式模拟可以获得高时空分辨率的资料。研究制作了新的地表植被功能型融合数据(MVEG),然后利用最新的高时空分辨率的中国气象局陆面数据同化系统HRCLDAS-V1. 0(1 km,1 h)驱动CLM模式对青藏高原2015年10 cm的土壤温度开展了模拟研究。结果表明,HRCLDAS-V1. 0的大气强迫数据(1 km,1 h)显著降低了模式模拟的误差,MVEG可以改善对极值的模拟,并使土壤温度空间分布较为合理。CLDAS/CLM(6 km,1 h)模拟值整体比观测值偏高1℃左右,HRCLDAS/CLM(1 km,1 h)有所改进,模拟的土壤温度年平均偏差绝对值和均方根误差分别降低0. 82和0. 18℃。HR-MVEG/CLM(1 km,1 h,同时改进了植被功能型)的模拟值最接近观测值,年平均均方根误差减小0. 27℃,且可以体现出土壤温度空间分布的细节特征。  相似文献   

10.
基于组网观测的那曲土壤湿度不同时间尺度的变化特征   总被引:2,自引:0,他引:2  
李博  张淼  唐世浩  董立新 《气象学报》2018,76(6):1040-1052
利用第三次青藏高原大气科学试验的土壤湿度观测数据,分析了那曲多空间尺度组网观测的28个站2、5、10、20和30 cm 5个不同深度土壤湿度的季节变化和日变化特征,并对比讨论了土壤湿度站点间的差异。分析表明,各层土壤湿度均存在显著的季节变化。冬春季节,20 cm以上土壤湿度随深度变浅而减小。夏秋季节土壤湿度随深度增加而减小,并分别在7月上、中旬和9月出现两个峰值。10月以后进入土壤湿度衰减期。土壤温度和土壤湿度存在协同变化关系。在一定的温度范围内,土壤发生冻结-融化过程,引起土壤湿度变化。在太阳辐射加热下,土壤表层水分蒸发,进而影响土壤温度。不同观测站间土壤湿度差异较大,夏秋季离散性大于冬春季。不同季节土壤湿度的日变化存在差异。春季10 cm以上土壤湿度日变化明显,08-10时(北京时)达到最低,19-20时达到最高。夏季土壤湿度日变化较为平缓。秋季2 cm深度土壤湿度日变化明显。线性拟合结果表明,1、4、10月土壤湿度和土壤温度为正相关关系。但是在夏季,土壤湿度与土壤温度为负相关。站点间土壤湿度变化的离散性表明,多测站才能全面体现青藏高原某区域的陆面状态。文中结果为青藏高原地区土壤湿度卫星参数验证和数值模式参数化提供了多角度的观测依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号